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Abstract—Marine biomass composition analysis traditionally
requires time-consuming processes and domain expertise. This
study demonstrates the effectiveness of Rapid Evaporative ion-
ization Mass Spectrometry (REIMS) combined with advanced
machine learning techniques for accurate marine biomass compo-
sition determination. Using fish species and body parts as model
systems representing diverse biochemical profiles, we investigate
various machine learning methods, including unsupervised pre-
training strategies for transformers. The deep learning ap-
proaches consistently outperformed traditional machine learning
across all tasks. We further explored the explainability of the
best-performing and mostly black-box models using Local Inter-
pretable Model-agnostic Explanations to find important features
driving decisions behind each of the top-performing classifiers.
REIMS analysis with machine learning can be accurate and
potentially explainable technique for automated marine biomass
compositional analysis. It has potential applications in marine-
based industry quality control, product optimization, and food
safety monitoring.

Index Terms—AI applications, explainable AI, machine learn-
ing, marine biomass, mass spectrometry, multidisciplinary AI

I. INTRODUCTION

THE fish processing industry forms a critical component of
the global seafood supply chain, transforming raw marine

biomass into consumer products through multiple stages. This
process typically involves species sorting, cleaning, filleting,
packaging, and quality control at various checkpoints. Each
stage presents unique challenges that can benefit from artificial
intelligence and machine learning (AI/ML) solutions. The
traditional fish processing workflow begins with the arrival
of catch, where workers must rapidly sort different species - a
task prone to human error particularly with similar-looking
fish. The catch then moves through cleaning and filleting
stations, where different body parts are separated for various
products - from premium fillets to processed fish meal. Quality
control occurs throughout, checking for freshness, proper
handling, and accurate labeling. Finally, products are packaged
and prepared for distribution. Several critical challenges exist
within this workflow:

1) Quality control: Mislabeling and fraud remain persistent
issues in the seafood industry [1], with economic and
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food safety implications. Studies have shown significant
rates of species substitution in various markets [2].

2) Product Optimization: Different fish species and fish
body parts have varying commercial values and uses,
with some parts commanding premium prices in specific
markets. Accurate classification of these parts ensures
optimal resource utilization and maximizes economic
value across the supply chain [3].

3) Safety Monitoring: Accurate tracking of processed
species volumes is essential for both regulatory com-
pliance and stock management [4].

These areas provide opportunities where automated analysis
can signficantly improve fish processing. Specifically, we ex-
plore the application of machine learning to Rapid Evaporative
Ionization Mass Spectrometry (REIMS) data across two criti-
cal classification tasks: fish species identification and body part
classification. REIMS technology, combined with machine
learning algorithms, aiming to offer a promising solution for
real-time, accurate analysis during processing operations. Our
focus on these specific tasks is driven by their direct impact
on industry pain points:

(1) Species classification helps combat fraud and ensures
proper resource management. (2) Body part identification
helps to optimize processing efficiency and product value. (3)
Accurate species counting supports both regulatory compli-
ance and sustainability efforts.

This paper demonstrates how ML techniques applied to
REIMS data can enhance the efficiency and accuracy of these
critical fish processing operations, while supporting broader
goals of sustainability and food security in the seafood indus-
try.

This study utilizes datasets provided by New Zealand Plant
and Food Research as part of Cyber-Marine [5]. REIMS can
be used to optimize the value obtained from seafood resources.
The dataset consists of mass spectrometry samples collected
using REIMS, where an electrosurgical knife is used to create
an aerosol from the samples. This aerosol is then directed into
a mass spectrometer, where ionization occurs, allowing for
mass-to-charge ratio analysis. Each sample undergoes multiple
incisions lasting 3-5 seconds, providing detailed chemometric
data in the mass range of m/z 77.04 - 999.32.

REIMS marine biomass analysis faces several challenges:
time-consuming manual “offline” analysis, costly domain ex-
pertise required, high-dimensionality [6], and few training
samples, and the need for automated “online” inference.
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Note, “online” inference in the domain of chemistry and fish
processing, not to be confused with “online” learning from
machine learning. The rapid nature of REIMS necessitates
equally rapid inference of its results, as traditional analytical
chemistry techniques which take several hours are too slow [7].
Furthermore, current analytical methods for REIMS data often
require domain expertise in chemistry and fish processing,
which does not match the speed of REIMS. Traditionally,
samples would be sent away for “offline” analysis by domain
experts in chemistry, we look to develop methods capable of
automated inference for “online” analysis on the production
line of a fish processing factory. REIMS also produces high-
dimensional data, with this particular dataset having 2080
mass-to-charge ratios as features, but there are limited training
instances due to the time-consuming and expensive task of
sample preparation. Additionally, industry applications require
fast, accurate, and interpretable models that can be verified and
troubleshooted in real-world scenarios.

To address the above challenges, this paper proposes several
innovative machine learning approaches that provide auto-
mated inference, eliminating the need for domain exper-
tise in chemistry and fish processing. To handle the high-
dimensionality of REIMS data, this paper utilizes deep learn-
ing [8], [9] and evolutionary computation [10], [11] that can
address complex feature interactions in mass spectra with lim-
ited training instances. Techniques like BERT [8] and attention
mechanisms [9] can capture complex, non-linear relationships
between features in high-dimensional data. To mitigate the
limited number of training samples, we implement unsu-
pervised pretraining. The unsupervised pretraining approach
involves training the model on a large amount of unlabeled
data before fine-tuning it on the limited labelled dataset. The
model learns general features and patterns from the unlabeled
data, which can then be transferred to the specific task at hand.
This can significantly improve performance when labelled
data is scarce. Finally, we employ Local Interpretable Model-
agnostic Explanations (LIME) [12] to provide interpretable
outputs that identify important features and quantify their
impact, making our models more accessible to domain experts
in chemistry and fish processing.

The main contributions of the paper are:

1) Real-time Marine Biomass Analysis: The paper
demonstrates the use of REIMS combined with ad-
vanced machine learning techniques to enable automated
analysis of marine biomass. This represents a significant
improvement over traditional, time-consuming methods.

2) Machine learning on sequential data: The paper
demonstrates that deep learning approaches, particu-
larly transformers with and without progressive masking
pre-training, consistently outperform traditional machine
learning methods for analyzing sequential REIMS data.

3) Feature importance: Identify the important mass-to-
charge ratios for the best performing models. This
enhances domain knowledge in fish processing and
chemistry.

II. RELATED WORKS

Building upon the foundation laid in the introduction, this
section delves deeper into the existing body of research on
marine biomass analysis, exploring both traditional methods
and recent advancements in REIMS technology, while high-
lighting the gaps and challenges that our proposed approach
aims to address. We also provide the necessary background
on deep learning required.

A. Marine Biomass

Mislabelling is a significant issue in the global seafood
industry, with a meta-analysis of genomic profiling methods
finding an average mislabelling rate of 30% worldwide [2].
Machine learning methods using REIMS data offer a promis-
ing solution to this problem by enabling more accurate fish
species classification. For example, in 2016, a restaurant in
Melbourne was accused of serving catfish instead of dory [13],
highlighting the need for better species detection techniques.
REIMS technology, which works on both raw and cooked
biomass, can combat fraud by ensuring species authenticity.
Approximately 40% of a fish is edible fillet, while the re-
maining 60% can be repurposed into products like fertiliz-
ers or high-value pharmaceutical-grade omega-3 concentrates.
Fish oil, rich in omega-3 polyunsaturated fatty acids [14],
is nutritionally essential but increasingly scarce in Western
diets [15]. REIMS-based machine learning methods in fish
processing also help identify high-value parts for repurposing
into valuable products, contributing to the rising consumer
demand for omega-3 supplements made from diverse marine
biomass [16].

B. REIMS

Traditional approaches for analyzing marine biomass com-
position have long been the cornerstone of research and quality
control in the seafood industry. These methods include Gas
Chromatography-Mass Spectrometry [17], Nuclear Magnetic
Resonance Spectroscopy [18], and Genomic Profiling [2].
While these techniques have proven valuable, they often
come with significant drawbacks. They are typically time-
consuming, requiring extensive sample preparation and anal-
ysis time. Additionally, they are labour-intensive, demanding
skilled technicians to operate complex equipment and interpret
results. Perhaps most importantly, these methods necessitate
substantial domain expertise, limiting their accessibility and
scalability in real-world applications. These limitations have
spurred the search for rapid techniques for marine biomass
analysis in fish processing.

In recent years, REIMS has emerged as a promising tech-
nique for rapid and accurate analysis of biological samples,
addressing many of the limitations of traditional methods.
Since its introduction in the original paper by Balog et al.
[19], REIMS has demonstrated its versatility and effective-
ness across various applications. For instance, it has been
successfully employed to detect horse offal mixed into beef
mince at concentrations as low as 1%-5%, showcasing its
potential in addressing food fraud [1]. In the realm of seafood,
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REIMS has been applied to binary classification tasks for
detecting fish species and catch methods, further illustrating
its utility in combating fish fraud [20]. Historically, REIMS
biomass analysis has primarily relied on Orthogonal Partial
Least Squares Discriminant Analysis (OPLS-DA) [21]–[23]
with Principal Component Analysis (PCA) for dimensionality
reduction [24]. However, this PCA-OPLS-DA approach has
limitations, particularly in its reliance on outlier thresholding
for adulteration detection, which requires manually defined
hyperparameters set by domain experts in chemistry. This
work proposes automated methods with learnable parameters
that do not require domain expertise in chemistry to be
configured. Additionally, this work proposes deep learning and
evolutionary computation methods from machine learning that
outperform the traditional OPLS-DA approach.

C. Machine Learning for REIMS

Deep learning models were selected for REIMS marine
biomass analysis because of their ability to handle complex,
high-dimensional data with sequential or structured dependen-
cies, which are inherent in REIMS data. Transformers [8], [9],
known for their powerful self-attention mechanisms, excel at
weighing the importance of different features in sequential
data, making them well-suited for identifying patterns in
REIMS spectra. Since REIMS data, like sequences in lan-
guage, consists of ordered data points (mass-to-charge ratios)
with varying degrees of importance, the transformer’s attention
mechanism allows it to dynamically focus on critical parts of
the spectrum for classification or prediction. Long Short-Term
Memory (LSTM) networks [25], a type of recurrent neural
network (RNN), are also effective for REIMS data because
they capture long-term dependencies in sequential data. This
is crucial for REIMS analysis, as spectral data might contain
dependencies across distant mass-to-charge values. LSTM’s
ability to store and retrieve information over long sequences
enhances its performance in such tasks, especially when the
signal patterns may not be immediately adjacent. Variational
Autoencoders (VAEs) [26] offer an effective approach to
handling the complexity and variability of REIMS data by
learning a compressed, latent representation of the spectral
information. VAEs can also reconstruct this data, making them
ideal for tasks like species and body parts classification, where
they can model and detect small anomalies or deviations in the
spectral data. Kolmogorov-Arnold Networks (KAN) [27] are
highly efficient at approximating complex functions, which is
essential in REIMS data analysis, where subtle differences in
spectra can indicate different classes such as species and body
parts. KAN’s ability to improve function approximation makes
it especially powerful for handling non-linear patterns in mass
spectrometry data, which traditional models may struggle to
capture. Convolutional Neural Networks (CNN) [28]–[31],
although primarily used in image processing, are highly effec-
tive for REIMS data due to the spatial connectivity in mass
spectra. Just as neighbouring pixels in images share spatial
relationships, neighbouring mass-to-charge ratios in REIMS
data also exhibit dependencies. CNNs can exploit this structure
to identify patterns in one-dimensional data, treating mass

spectra similarly to 1D images. Finally, Mamba [32], a state-
space model, offers an efficient alternative to transformers
for sequential data processing. Mamba is designed for high-
performance handling of complex time-series data, making it
an excellent fit for REIMS analysis, where both computational
efficiency and the ability to model sequential dependencies are
essential for automated or large-scale biomass analysis.

III. METHODS

With the background established, this section moves on to
the heart of our analytical approach: the classification methods
that extract meaningful insights from the REIMS spectra. This
paper evaluates a diverse range of machine learning techniques
to classify the REIMS spectra:

• Benchmark method: Orthogonal Partial Least Squares
Disrciminant Analysis (OPLS-DA) [22]. OPLS-DA is
a supervised multivariate analysis technique that sepa-
rates predictive from non-predictive variation in complex
datasets to improve model interpretability and identify
variables that drive class separation.

• Traditional machine learning methods: Random Forest
(RF) [33], K-Nearest Neighbors (KNN) [34], Decision
Trees (DT) [35], Naive Bayes (NB) [36], Logistic Regres-
sion (LR) [37], Support Vector Machines (SVM) [38],
and Linear Discriminant Analysis (LDA) [23].

• Ensemble method: [39]: A combination of the above
traditional methods. A hard voting ensemble classifier
combines multiple base classifiers by having each clas-
sifier make a prediction and taking the most common
predicted class label as the final output through majority
voting.

• Deep neural networks: Transformer [8], [9], Long
Short-Term Memory (LSTM) [25], Variational Autoen-
coder (VAE) [26], Convolutional Neural Network (CNN)
[28]–[31], Kolmogorov-Arnold Networks (KAN) [27]
and Mamba [32].

• Genetic Programming: Multiple Class Independent Fea-
ture Construction (MCIFC) [10], [11]. The MCIFC al-
gorithm represents candidate solutions as multiple trees,
with one subtree per class. This structure serves feature
construction and classification purposes, employing a
winner-takes-all strategy for class prediction.

A. Transformer

1) Architecture: The transformer model, originally pro-
posed in the seminal paper by Vaswani et al. [9], revolu-
tionized natural language processing and other tasks involving
sequence data by relying entirely on self-attention mechanisms
instead of recurrent or convolutional layers. Our transformer
model consists of an encoder only structure, where encoders
are stacked as layers. Each encoder layer comprises multi-head
self-attention followed by position-wise feed-forward layers.
We implement a transformer without positional embeddings
(NoPE) [40].

In the architecture used for this work (fig. 1), the encoder
blocks are equipped with residual connections [41], allowing
gradients to flow efficiently during backpropagation. These
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Fig. 1: Transformer Architecture.

residual connections act as “gradient superhighways”, enabling
deeper models without the risk of vanishing or exploding
gradients, thus allowing better training stability.

A notable aspect of the transformer architecture used in this
work is the choice of pre-norm layer normalization [42], [43],
where the layer normalization is applied before multi-head
attention and feed-forward layers. This approach contrasts with
post-norm layer normalization (used after the attention block),
as it stabilizes training and improves the convergence of deep
transformers by ensuring more consistent gradients across
layers. By normalizing before the main components of each
layer, the pre-norm structure helps maintain better gradient
flow across the network, contributing to more effective training
of the encoder layers.

2) Progressive masking: Figure 2 illustrates the concept of
progressive masking in pre-training transformer models. At
the bottom right we see the original mass spectra. On the top
left, we see the first mask, which applies a mask to all spectra
except the first one. On from that we see masks that slowly
shrink down until we reach the original spectra. These patterns
demonstrate how the masking process evolved, starting with
masking just one spectra and progressively unmasking more
spectra in the sample. Mask 1 shows only the first spectra,
with the rest masked. Mask 2 reveals two spectra, masking
the remainder. Mask 3 unmasks one more spectra, showing
three spectra. The final mask shows all the spectra except the
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Fig. 2: Masked language modelling.

final one. This progressive masking technique creates multiple
training examples from a single spectra, effectively increasing
the amount and diversity of training data for the transformer
model. In this work, we apply left-to-right progressive masking
to REIMS data. Instead of sentences in natural language
processing, we are masking mass spectra, and pre-training
has the model predict the masked spectra. This amortized the
limited number of training samples by creating 2080 masked
spectra per instance to train from, resulting in a training set
of 2080 features × 72 samples = 149,760 instances.

3) Pre-trained Transformers: Pre-training is an extension
of transformers that allows them to be pre-trained on a general
task, then transfer the pretrained weights to a transformer
model to be fine-tuned on a downstream task. This paper
adopts unsupervised pre-training inspired by BERT [8] to
improve the performance of transformer models on mass spec-
trometry tasks. Unsupervised pre-training offers significant
benefits, particularly for models working with limited labelled
data. By training on large-scale, unlabeled datasets, the model
learns general patterns that capture the underlying structure of
the data, resulting in useful embeddings that can be fine-tuned
for specific downstream tasks with smaller, labelled datasets.
This approach mitigates the need for extensive labelled data
while still providing high-quality results.

This approach is an adaptation of the masked language
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modelling (MLM) task used in BERT to handle mass spec-
trometry data. In MLM, tokens in a sentence are progressively
masked, and the model is trained to predict these masked
tokens. Analogously, in masked spectra modelling (MSM),
mass-to-charge ratios in spectra are progressively masked, and
the model learns to predict the missing values. This is framed
as a regression task, where the loss function is the mean
squared error (MSE). By learning to predict missing mass-to-
charge ratios, the model develops a robust understanding of the
relationships between features in the spectra, making it well-
suited for downstream tasks. We use left-to-right progressive
masking to amortize the limited number of training instances.

By pre-training on this task, the transformer network learns
valuable domain-specific representations. When fine-tuned on
smaller, labelled datasets, the model can leverage these pre-
trained weights, resulting in improved accuracy, faster conver-
gence, and better generalization. This approach is particularly
advantageous in fields like mass spectrometry, where labeled
data is limited but large amounts of unlabeled data are readily
available.

IV. EXPERIMENTAL SETUP

Having outlined our various machine learning approaches
for analyzing REIMS data, we now describe the experimental
setup used to evaluate these methods, including the bench-
mark technique, datasets, and parameter settings used in our
evaluation

A. Benchmark technique

To evaluate the performance of the proposed methods, Or-
thogonal Partial Least Squares Disrciminant Analysis (OPLS-
DA) [22] is used as a benchmark to compare new approaches
to the existing methods for REIMS analysis. OPLS-DA is
the standard technique for biomass analysis using REIMS, as
supported by prevelant use in the literature [1], [7], [19], [20].
Therefore, we use OPLS-DA as a benchmark for comparative
performance, showing the contrast between traditional and
new approaches for biomass analysis with REIMS. OPLS-
DA is considered a machine learning technique, specifically a
supervised dimensionality reduction and classification method.
It falls into the category of linear supervised machine learning
algorithms, similar to PLS-DA (Partial Least Squares Dis-
criminant Analysis) and LDA (Linear Discriminant Analysis).
However, its primary strength lies in its ability to sepa-
rate systematic variation into predictive and orthogonal (non-
predictive) components, which makes it particularly useful for
both classification and biomarker identification in fields like
metabolomics and chemometrics.

B. Experimental Settings

Each method is evaluated and the average is given over
30 independent runs. Stratified k-fold cross-validation, with
k = 5 for fish species and k = 3 for body parts, is particularly
beneficial for evaluating model performance on datasets with
limited training samples and imbalanced classes. This method
ensures that each fold maintains a class distribution similar to

(a) Mackerel

(b) Hoki

Fig. 3: Mackerel (left) Hoki (right) fish species.

Guts Liver

Skins

Head Frames

Fillet

Fig. 4: Fish body parts.

the entire dataset, which helps the model learn effectively from
both majority and minority classes. By doing so, it reduces the
variance of performance estimates, leading to more stable and
reliable metrics. Additionally, it maximizes the use of available
data, allowing each sample to contribute to both training and
validation, which is crucial for small datasets. With three and
five-fold cross-validations, the model is tested across various
scenarios, improving its generalization to unseen data and
providing a comprehensive evaluation of its performance.

C. Datasets

Figure 3 gives the two wild-caught fish species - Hoki and
Mackerel - that are the subject of this study. These are two
important fish in New Zealand’s seafood industry, especially
given New Zealand’s largest fishery is hoki [44].

For illustrative purposes, the different fish body parts, which
are shared across both species of fish, are given in Figure 4.

The dataset used consists of REIMS spectra collected from
two fish species and seven body parts. Particularly, we will
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have two different datasets corresponding to two different
(following) tasks:

1) Species classification: The task is to distinguish be-
tween two species of fish (Hoki and Mackerel) based on
2080 features derived from REIMS analysis. This clas-
sification is crucial for food authentication and quality
control in the seafood industry, helping prevent species
substitution fraud and ensure accurate product label-
ing. We focus on pure (non-contaminated/non-mixed)
samples to establish a reliable baseline for species
identification. The dataset contains 106 samples, with
a relatively balanced distribution of 44.44% Hoki and
55.56% Mackerel. These proportions reflect the natural
availability of samples while maintaining sufficient rep-
resentation for both species to train a robust classifier.

2) Body parts classification: This multi-class classification
task aims to identify seven distinct fish parts (fillets,
heads, livers, skins, gonads, guts, and frames) using
REIMS data. The classification supports process au-
tomation by enabling automated sorting and processing
in seafood production lines, while helping maximize
the value of each fish part, such as using fillets for
premium products and frames for fish meal. Further-
more, precise classification ensures proper tracking and
documentation of different fish components throughout
the supply chain. The dataset contains 33 samples with
a distribution of 16.66% each for fillets, heads, livers,
skins, and guts, and 8.33% each for gonads and frames.
The relatively small sample size per class is attributed
to a limited number of annotated samples for each class
of body part.

The REIMS spectra were normalised to be within x ∈
[0, 1], fitted to the training set of each fold. Let X =
{x1, x2, . . . , xn} be a dataset containing n elements. The
normalized value x′

i for each element xi is given by:

x′
i =

xi − xmin

xmax − xmin
(1)

where:
• xmin is the minimum value in the dataset X
• xmax is the maximum value in the dataset X

D. Parameter settings

Experiments use the default settings from sklearn [45],
except SVM with a linear kernel, and LR set to 2,000 for the
maximum number of iterations. The ensemble voting classifier
combines all the traditional machine learning methods into one
model. The ensemble uses hard voting, i.e. uses predicted class
labels for majority rule voting.

The deep learning models all use the following parameters.
The AdamW optimizer [46] decouples weight decay from the
learning rate, an improvement over the popular Adam opti-
mizer [47]. Dropout [48] turns off neurons at random during
training to efficiently approximate a bagged ensemble of sub-
neural networks. Label smoothing [49] softens class labels by
combining the one-hot encodings with a uniform distribution,
adding noise to the class labels. The deep learning networks

TABLE I: Transformer parameter settings.

Learning rate 1E-5
Epochs 100
Dropout 0.2
Label smoothing 0.1
Early stopping patience 5
Optimiser AdamW
Loss: MSM MSE
Loss: Speciation & Part CCE
Input dimensions 2080
Hidden dimensions 128
Output dimensions: MSM 2080
Output dimensions: Speciation 2
Output dimensions: Part 7
Number of layers 4
Number of heads 4

uses Gaussian error linear units (GELU) [50] for activation
functions. Early stopping [51] is one of the most common
forms of regularization which saves the model parameters
when the validation loss improves, it tunes the hyperparameter
of epochs [52]. To allow fair comparison, each model has the
same hyperparameters; a hidden dimension of 128, trained for
100 epochs, a learning rate of 1e-5, a batch size of 64, 4 layers
(where applicable), dropout of p = 0.2 and label smoothing
of 0.1.

Table I gives the configuration of hyperparameters for the
transformer - these settings were derived through trial and error
via experimentation.

We follow the original paper for the parameter settings for
MCIFC [11]. We use a construction ratio of 1, allowing for
one tree per class.

V. RESULTS AND DISCUSSIONS

Having outlined our classification strategies, this section
now presents and interprets the outcomes of applying these
various machine learning techniques to the REIMS datasets.
Table II and table III gives the results of the classifiers on the
training and test set, with the best-performing model on the test
set given in bold, and the second-best are given in italics. Note
that the method pre-trained indicates the transformer with
progressive left-to-right masked pre-training. The transformer
was pre-trained on the training data of each individual fold
during stratified k-fold cross-validation.

A. Fish Species Classification

For the task of fish species classification, the best-
performing models were the pre-trained Transformer
(99.62%). This model excels in capturing the intricate patterns
in the REIMS data, which provides distinct signatures for
different fish species. The high performance of the decision
tree model (99.17%) shows that even traditional machine
learning methods are highly effective in this domain. The
tree-based models like Decision Trees and Random Forests
work well because they can split the data based on highly
discriminative features, capturing non-linear relationships
effectively. For a decision tree, while individual splits are
linear (axis-parallel), their combination creates non-linear
decision boundaries.
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TABLE II: Classification results for fish species identification.

Method Train Test
OPLS-DA 98.91% ± 0.74% 96.39% ± 4.44%
KNN 95.76% ± 0.00% 79.37% ± 0.00%
DT 100.00% ± 0.00% 99.17% ± 0.00%
LR 100.00% ± 0.00% 85.21% ± 0.00%
LDA 98.54% ± 0.00% 92.29% ± 0.00%
NB 89.17% ± 0.00% 66.67% ± 0.00%
RF 100.00% ± 0.00% 90.05% ± 0.56%
SVM 100.00% ± 0.00% 84.58% ± 0.00%
Ensemble 100.00% ± 0.00% 87.84% ± 0.40%
Transformer 100.00% ± 0.00% 99.17% ± 1.67%
Pre-trained 100.00% ± 0.00% 99.62% ± 1.15%
LSTM 100.00% ± 0.00% 98.84% ± 1.76%
VAE 100.00% ± 0.00% 98.64% ± 1.94%
KAN 100.00% ± 0.00% 97.41% ± 2.45%
CNN 100.00% ± 0.00% 96.87% ± 3.24%
Mamba 100.00% ± 0.00% 98.27% ± 2.14%
MCIFC 100.00% ± 0.00% 97.89% ± 2.59%

TABLE III: Classification results for fish body parts identifi-
cation.

Method Train Test
OPLS-DA 80.11% ± 2.86% 51.17% ± 22.16%
KNN 43.06% ± 0.00% 39.17% ± 0.00%
DT 100.00% ± 0.00% 35.50% ± 4.35%
LR 100.00% ± 0.00% 59.58% ± 0.00%
LDA 74.31% ± 0.00% 52.92% ± 0.00%
NB 100.00% ± 0.00% 48.33% ± 0.00%
RF 100.00% ± 0.00% 61.67% ± 0.00%
SVM 100.00% ± 0.00% 52.33% ± 2.57%
Ensemble 100.00% ± 0.00% 52.33% ± 2.57%
Transformer 100.00% ± 0.00% 84.06% ± 6.42%
Pre-trained 100.00% ± 0.00% 83.94% ± 7.12%
LSTM 100.00% ± 0.00% 82.11% ± 9.15%
VAE 85.43% ± 6.28% 74.81% ± 13.84%
KAN 100.00% ± 0.00% 73.06% ± 9.58%
CNN 100.00% ± 0.00% 70.41% ± 13.75%
Mamba 100.00% ± 0.00% 80.67% ± 8.73%
MCIFC 97.95% ± 1.61% 55.45% ± 19.19%

The consistently high test accuracy across all models sug-
gests that the REIMS dataset for fish species contains strong,
distinguishable signals that can be effectively exploited by
various machine learning techniques. This makes the classifi-
cation task easier for both deep learning models and traditional
methods. The models excel at this task because the REIMS
data likely provides clear, consistent, and high-dimensional
representations of species differences, which can be leveraged
by the deep architectures for feature extraction and by tradi-
tional methods for decision-making.

All the deep learning models consistently outperform the
traditional OPLS-DA method - with the pre-trained trans-
former getting 96.39% test accuracy - from the literature for
REIMS analysis. The research field of REIMS analysis should
consider deep learning methods for other applications, as they
offer superior performance.

B. Fish Body Part

The transformer without pre-training performed the best in
the task of classifying fish body parts, achieving a test accuracy
of 84.06%. These models are well-suited for this task because
they can handle complex and multi-dimensional input data like

REIMS, capturing the subtle differences between body parts
through advanced feature extraction and context awareness.
LSTMs, with their ability to capture sequential dependencies,
also perform well (82.11%), suggesting some temporal or
positional dependencies in the ionization patterns that relate
to specific body parts.

Traditional machine learning methods, however, show lower
performance compared to the fish species classification task.
This suggests that classifying fish body parts is inherently
more complex due to less distinct signal differences between
body parts, making it harder for simpler models to differentiate
between classes. This increased difficulty likely arises from
overlapping chemical compositions between different parts of
the same species. Previous work [17] on fish species and body
parts classification with gas chromatography data illustrated
the increased difficulty of body parts classification.

Again, all the deep learning methods - with the transformer
achieving the best test accuracy at 84.06% - outperform
the OPLS-DA method (51.17%). For the second task, deep
learning methods have proven to be superior to the traditional
approach from the literature.

C. Summary:

Across all tasks, the deep learning methods offered superior
performance to the OPLS-DA method that dominates the liter-
ature [1], [7], [19], [20] on REIMS analysis. Future work in the
field for other applications of REIMS analysis should consider
deep learning methods as a viable alternative. The varying per-
formance of different models across tasks highlights the impor-
tance of selecting appropriate algorithms for specific analytical
challenges in marine biomass analysis. While the transformer
model consistently excelled, simpler models like decision
trees demonstrated competitive performance in certain tasks,
offering potential advantages in terms of interpretability and
computational efficiency. The challenges faced in body part
classification, point to areas where further research is needed.
This might include exploring more advanced feature extraction
techniques, increasing the size and diversity of the training
dataset, or developing specialised model architectures tailored
to these specific tasks. Overall, our results demonstrate the
potential of combining REIMS with machine learning for
automated and accurate marine biomass analysis, while also
highlighting areas for future improvement and research.

VI. FURTHER ANALYSIS ON FEATURE IMPORTANCE

While the performance of our vanilla and pretrained trans-
formers is promising, understanding how they arrive at their
predictions is crucial for building trust and gaining insights.
It is important to identify important features driving deci-
sions made by black-box models, such that these models can
be understood, trusted, and verified by domain experts in
chemistry and fish processing. To address this, we employ
Local Interpretable Model-agnostic Explanations (LIME), a
technique used to explain predictions made by complex black-
box machine learning models [53]. We analyze the top 5
most important features of the top-performing models that
have been identified by LIME. LIME approximates a complex
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model’s behaviour with a simpler and interpretable model
(e.g. linear regression) for a specific instance in a local area
to be understood. LIME creates and evaluates many altered
versions through perturbations of an instance in the input data
to see how those perturbations change the prediction. Through
perturbations and their observed changes to the prediction,
this information is used to generate a local explanation that
highlights which features influenced the prediction. LIME
explanations, or feature importance charts, are used to explain
the predictions of machine learning models by showing which
features (in this case, specific mass-to-charge ratios) are most
influential for a particular prediction. In these LIME charts:

• Green bars: These represent features (mass-to-charge
ratios) that contribute positively towards the predicted
class. In other words, the presence or higher intensity
of these features increases the likelihood of the sample
being classified as the predicted class.

• Red bars: These represent features that contribute nega-
tively towards the predicted class. The presence or higher
intensity of these features decreases the likelihood of the
sample being classified as the predicted class.

• The x-axis: The length of each bar indicates the magni-
tude of the feature’s importance. Longer bars (whether
green or red) signify that the corresponding feature
strongly influences the model’s prediction. The x-axis
represents the feature importance.

• The y-axis: This represents the mass-to-charge (m/z)
ratios and their intensity thresholds from the mass spec-
trometry data. The y-axis represents the important fea-
tures.

A. Fish Species Classification

The pre-trained transformer achieves the best classification
accuracy (99.62%) for fish species classification. Figure 5
gives the LIME explanation for the pre-trained transformer for
the fish species Mackerel. The most important feature, and the
strongest green bar, is when the mass-to-charge ratio 794.0990
m/z is within the normalized intensity range 0.28 < y ≤ 0.47.
Suggesting that large amounts of this molecule are present in
the fish species Mackerel.

Figure 6 gives the LIME explanation for the pre-trained
transformer for the fish species Hoki. The most important
feature, and the strongest red bar, is when the mass-to-charge
ratio 229.0710 m/z is within the normalized intensity range
0.26 < y ≤ 0.36. Suggesting that large amounts of this
molecule indicate a sample does not belong to the fish species
Hoki.

Figure 7 gives the decision tree with near-perfect accuracy,
showing how a simple model with two splits, can classify
fish species, giving both a highly accurate and interpretable
model. The figure shows the two mass-to-charge ratios and
their intensity thresholds for which they based their decision
boundaries on.

B. Fish Body Part

The transformer performs the best (83.94%) on the fish
parts dataset. Figure 8 gives the LIME explanation for the

Fig. 5: Lime explanation for pre-trained transformer for
classification of fish species Mackerel.

Fig. 6: Lime explanation for pre-trained transformer for
classification of fish species Hoki.

Fig. 7: Decision tree for fish species.
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Fig. 8: Lime explanation for transformer for classification of
fish part head.

Fig. 9: Lime explanation for transformer for classification of
fish part fillet.

transformer for the fish parts classification for fish heads. The
most important feature, and the strongest green bar, is when
the mass-to-charge ratio 256.1089 m/z is within the normalized
intensity range 0.26 < y ≤ 0.35. This indicates that large
amounts of this molecule are likely present in fish heads.

Figure 9 gives the LIME explanation for the transformer for
the fish body part of the fillet. The most important feature, and
strongest red bar, is when the mass-to-charge ratio 722.0810
m/z is greater than the normalized intensity 0.41. This suggests
that large amounts of this molecule are not expected in fish
fillets.

Figure 10 gives the LIME explanation for the transformer
for the fish body part of the liver. The most important
feature, and strongest red bar, is when the mass-to-charge
ratio 849.2039 m/z is within the normalized intensity range
of 0.27 < y ≤ 0.38. This indicates that large amounts of this
molecule are not likely to be found in fish liver.

Figure 11 gives the LIME explanation for the transformer
for the fish body part of the skins. The most important feature,
and the strongest red bar, is when the mass-to-charge ratio

Fig. 10: Lime explanation for transformer for classification
of fish part liver.

Fig. 11: Lime explanation for transformer for classification
of fish part skins.

191.0813 m/z is greater than the normalized intensity 0.32.
This indicates that large amounts of this molecule are not
usually found in fish skins.

Figure 12 gives the LIME explanation for the transformer
for the fish body part of the guts. The most important feature,
and the strongest red bar, is when the mass-to-charge ratio
675.1786 m/z is less than or equal to the normalized intensity
0.11. This suggests that small amounts of this molecule are
not usually found fish guts.

Figure 13 gives the LIME explanation for the transformer
for the fish body part of frames. The most important feature,
and strongest green bar, is when the mass-to-charge ratio
533.161 m/z is within the normalized intensity range of
0.25 < y ≤ 0.24. This indicates that average to large amounts
of this chemical are not expected to be found in fish frames.

Figure 14 gives the LIME explanation for the transformer
for the fish body part of gonads. The most important feature,
and strongest red bar, is when the mass-to-charge ratio 93.0882
m/z is less than or equal to the normalized intensity threshold
of 0.09 < y ≤ 0.18. Biochemically, this could suggest that
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Fig. 12: Lime explanation for transformer for classification
of fish part guts.

Fig. 13: Lime explanation for transformer for classification
of fish part frames.

m/z 93.0882 might correspond to a compound not found in
fish gonads.

VII. CONCLUSION AND FUTURE WORK

The results from these classification tasks demonstrate that
deep learning models, particularly Transformer is well-suited
for handling the complex, high-dimensional data generated
by REIMS data. These models consistently outperform tradi-
tional machine learning methods, especially for tasks involving
subtle or overlapping signal differences, such as body parts
detection. The pre-trained transformer outperforms the regular
transformer on fish species classification, suggesting that pre-
training captures meaningful embeddings that improve the per-
formance of downstream classification tasks. While traditional
models like decision trees show excellent performance in
simpler tasks like fish species classification, their performance
drops significantly for more challenging tasks, highlighting
the need for advanced feature extraction and representa-
tion learning that deep learning models provide. The overall
strong performance across the board suggests that REIMS

Fig. 14: Lime explanation for transformer for classification
of fish part gonads.

data provides rich, discriminative information, particularly for
fish species classification. However, body part identification
requires more sophisticated modelling approaches, where deep
learning shines due to its ability to capture complex patterns
and subtle signal deviations.

The application of explainable AI techniques, i.e. LIME,
provided valuable insights into the decision-making processes
of our models. These explanations revealed specific mass-to-
charge ratios that strongly influence classifications, enhancing
our understanding of the biochemical markers associated with
different fish species and body parts. For instance, the LIME
analysis for fish speciation highlighted distinct spectral regions
that differentiate Mackerel from Hoki. This interpretability
not only increases confidence in the model’s predictions but
also opens up possibilities for new scientific insights into the
biochemical composition of marine biomass. It demonstrates
that our approach can provide both accurate classifications
and meaningful, chemically relevant explanations for those
classifications.

Overall, this research opens up new possibilities for auto-
mated, accurate, and interpretable analysis in marine biomass
compositional studies, with significant implications for quality
control, product optimization, and food safety in marine-based
industries.

While our study has yielded promising results, it also opens
up numerous avenues for further research and development.
These are potential directions for expanding and refining
our approach. Those directions for future work include: (1)
develop a system for real-time REIMS data acquisition and
analysis, allowing for immediate classification results in in-
dustrial settings, and (2) work with regulatory bodies to ensure
that the developed methods meet or exceed current standards
for marine biomass analysis and food safety monitoring.
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