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Abstract

Navigating the analysis of mass spectrometry data for marine biomass and
fish demands a technologically adept approach to derive accurate and action-
able insights. This research will introduce a novel AI methodology to inter-
pret a substantial repository of mass spectrometry datasets, utilizing pre-training
strategies like Next Spectra Prediction and Masked Spectra Modeling, target-
ing enhanced interpretability and correlation of spectral patterns with chemical
attributes. Three core research objectives are explored: 1) precise fish species
and body part identification via binary and multi-class classification, respec-
tively; 2) quantitative contaminant analysis employing multi-label classification
and multi-output regression; and 3) traceability through pair-wise comparison
and instance recognition. By validating against traditional baselines and various
downstream tasks, this work aims to enhance chemical analytical processes and
offer fresh insights into the chemical and traceability aspects of marine biology
and fisheries through advanced AI applications.



Chapter 1

Introduction

The section provides a problem statement, motivations, limitations, research goals, sum-
mary, and organization of the proposal. Each of those sections will be explored in greater
detail in the remainder of this chapter.

Waste utilization in the global fishing industry needs improvement. As of 2020, approxi-
mately 100 million tonnes of wild fish are caught each year, but only about 40% of these fish
are processed into edible parts [1]. The remaining portions are often processed into fish oil
and fish meal, or discarded. In addition, many fisheries are in decline, despite global fishing
not significantly increasing in the past 30 years, making waste utilization an important focus
worldwide. The fishing industry must maximize the utilization and value of every kilogram
of marine biomass to preserve fish stocks and ensure there are plenty of fish in the sea for
future generations to reel in.

1.1 Problem Statement

Utilizing marine biomass is key to efficiency and sustainability of fish processing. To do
so, tools are needed that can identify valuable products. Fish processing gets messy, once
processed, cooked, or rendered into oil, it becomes impossible to identify fish species and
body parts visually. More sophisticated tools that perform chemical analysis are required.
Mass Spectrometry is one tool used to profile the chemical composition of marine biomass
for further analysis. Interpreting the results of this analysis is time-consuming, manually
laborious, and requires domain expertise in bio-chemistry. This work aims to automate the
analysis of Mass Spectrometry on marine biomass using machine learning. The analysis is inter-
ested in identifying fish species and body parts, detecting contamination - cross-species and
mineral oil, and labelling individual fish for troubleshooting. Increasing the speed of chem-
ical analysis of fish will improve the throughput of fish processing. Tools for contamination
detection and individual fish recognition offer new methods for quality assurance.

The New Zealand fishing industry prides itself on sustainability. New Zealand fisheries
are well-regulated with strict quotas for over 100 marine species [2]. The NZ fishing in-
dustry does not have many ’high volume’ fisheries, e.g. Hoki is the largest fishery with
approximately 110,010 tonnes of quota each year [3]. On a global scale, this is minuscule,
Norway alone has an aquaculture production of salmon of 4,000,000 tonnes a year [4]. Due
to low-volume but high-variability in New Zealand’s seafood industry, fish processing is a
difficult task. The variability comes from boatloads of different species as input to a fish
processing plant. Each species needs to be identified, separated, and checked for contami-
nants, then processed to maximize its value as output. Cyber-Marine [5] seeks to develop a
flexible factory, that can rapidly determine the composition of incoming fish biomass, and
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then choose an optimal processing route for this largely NZ-specific problem.
The Cyber-Marine Research Programme’s goal is to maximize waste utilization in fish pro-

cessing, and maximize value for harvested and aquacultured marine biomass. This research offers
tools that can identify marine biomass, no longer recognisable by the human-eye, a homoge-
neous mince/oil of rendered raw/cooked fish, and determine whether it can be repurposed,
to maximize its value. To identify fish species, body part, contamination, and as unique in-
dividuals. Real-time methods for rapid determination of fish can maximize the utilization
of marine biomass in fish processing, quickly identify and eliminate contamination, and im-
prove the quality, speed and efficiency of the factory overall. It is undertaken in collabora-
tion with Plant & Food Research [6] and Callaghan Innovation [7]. This research serves as a
proof-of-concept as part of a larger joint endeavour, the Cyber-Marine Research Programme
[5], which aims to achieve utilization and value for all harvested wild and aquacultured
seafood. The proposed methods offer diagnosis and analysis tools for quality assurance in
fish processing.

1.1.1 Quality Assurance

The many steps in the supply chain from ocean to plate, are prone to human error and crim-
inal activity. Consider the 2013 European Horse Meat Scandal [8]. Adulteration watered
down high-value beef mince products with low-value horse meat, and sold them to an un-
aware public, as a criminal enterprise to increase profits. The beef with adulteration applies
to the global fishing industry. A meta-analysis [9] of 51 studies of the global fishing industry
found an average mislabelling rate of 30%. Consumers of fish products want to be confident
they know what are eating, fish processing plants must ensure the labels on seafood prod-
ucts are accurate. Similar tools to [10] are needed for quality assurance that can determine
the composition and quality of fish products.

1.1.2 Potential for Automation

This work will employ machine learning techniques to detect spoilage indicators, quality
control, and contamination (ideally) on fresh marine biomass. Machine learning can be used
to develop tools with the potential to be more effective, efficient, and less expensive than
the equivalent human labour and domain expertise employed currently to analysis marine
biomass. Tools for quality control in fish processing are needed. Marine biomass is highly
prone to spoilage, and spoiled products cannot be sold. Spoilage can include enzymatic
spoilage, where the proteases and lipases inside the fish begin to digest animals, microbial
digestion, or due to oxidation in the air. The lipids in marine biomass make them especially
prone to oxidation in the air because they are highly unsaturated. Marine biomass must
be handled extremely carefully after it is caught to prevent this oxidation. Cyber-Marine
is interested in deploying machine learning techniques to measure the level of oxidation
in marine biomass. This can be used as a marker for quality control in fish processing.
There are numerous other quality control parameters for marine products, especially so for
marine oils, this work seeks machine learning techniques that can accurately profile these
QC parameters also. Marine biomass can be contaminated with several things, for example,
plastics and mineral oil - which is carcinogenic (it kills). Tools that identify contamination
in marine biomass are needed. Techniques that work on fresh (uncooked) marine biomass
are needed, as cooking the fish can destroy valuable proteins, collagen and active enzymes.
Cooking is energy-intensive and time-consuming, adding time and cost to fish processing,
so processing fresh marine biomass is preferred.
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Automation of fish processing reduces laborious manual labour, expensive domain ex-
pertise, and speeds up production lines. To meet the requirements of a factory setting,
models are needed that can be deployed and understood in real-time. This is challenging,
reduces the scope of machine learning techniques, eliminates black-box methods without
mechanistic interpretability, and focuses this work on explainable AI, whose models can be
understood by domain experts from chemistry without prior machine learning knowledge.
These domain experts, chemists, need to build trust in the predictions of the model, under-
stand the nuts and bolts, and be able to verify/troubleshoot the model in real-time. This
gives the constraints of accurate, efficient and interpretable models.

Any sufficiently advanced
technology is indistinguishable
from magic [11].

Arthur C. Clarke

1.2 Dataset

This research focuses on the marine biomass analysis for two mass spectrometry datasets
taken at different speeds therefore providing tabular datasets of different resolutions or di-
mensionality. Those mass spectrometry techniques are: 1) rapid evaporative ionisation
mass spectrometry (REIMS) [12], and 2) direct infusion mass spectrometry (DIMS) [13].
Chemists are interested in a technique that can provide rapid, interpretable and accurate
analysis of marine biomass in a factory setting. To do so chemists employ state-of-the-art
mass-spectrometry techniques, one known for its rapid speed, the other its high-resolution
granularity. In particular, the two state-of-the-art mass-spectrometry techniques are:

REIMS - Rapid evaporative ionisation mass spectrometry is one of the newest forms of
AMS and, as is the case with many analytical innovations was created for medical research
purposes. It operates using an electro-surgical knife, bipolar forceps or laser which creates
an aerosol (smoke) when cutting into a tissue sample. The aerosol is evacuated from the
sample through a transfer line into the ionisation source of a mass spectrometer where a
heated collision surface is situated and the ionisation process occurs. This description is an
excerpt from (Black 2017) [14]

DIMS - Direct mass spectrometry involves creating ions at atmospheric pressure from
solid samples before ions are sucked into an MS detector for analysis. DIMS is the most
common fingerprinting tool in metabolomics is direct infusion mass spectrometry (DIMS),
based on the direct introduction of sample extracts containing whole metabolites into the
mass spectrometer, which avoids the conventional time-resolved introduction of metabo-
lites into the MS after chromatographic separation, improving analysis rapidity and repro-
ducibility, nontargeted metabolite coverage, and, consequently, high-throughput screening
capability. This description is an excerpt from (Gonzalez 2014) [13].

REIMS is rapid and low-resolution, DIMS is slower and high-resolution. The performance
comparison of machine learning methods on both datasets provides insight as to whether
rapid mass spectrometry techniques are sufficient for quality control in fish processing.
Should they offer competitive results within an acceptable margin of error, but a fraction
of the time, rapid mass spectrometry would prove capable of real-world use in the applica-
tion of marine biomass analysis in fish processing. Please see section 3.1 for a comprehensive
and thorough description of the rapid mass spectrometry dataset.
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1.3 Machine Learning

The research will employ the AI techniques of binary/multi-class classification, multi-label/multi-
output regression, pair-wise comparison and instance recognition. These techniques are
applied to low sample volume dataset of chemical analysis of fish. Binary classification is
used for identifying fish species, and contamination detection. Binary classification is used
because there are two species of fish in the dataset for the classification task. Binary classifi-
cation is used for contamination detection because a sample is either contaminated or not, a
binary model with two class outputs. In both cases, the model predicts positive or negative
for belonging to one class. Multi-class classification is used to detect fish body parts, as there
are more than two classes for this task. Multi-label classification is used for contamination
analysis, where a sample may belong to multiple classes. Multi-label classification is used
because an individual sample may belong to one or more classes, and the model should pre-
dict the set of classes a sample includes. If a sample has been adulterated with cross-species,
the model predicts all the species are present. If a sample is contaminated with mineral
oil, the model predicts the species of the fish, and the presence of mineral oil, as both class
labels are important for informing human decision-making in quality assurance. Pair-wise
comparison is used for traceability, in identifying if two samples came from the same fish.
Instance recognition is used to sample attribution, to provide a unique marker for each in-
dividual fish, and to detect if a new sample belongs to an existing individual. For pair-wise
comparison and instance recognition, it becomes a few/one-shot learning task.

The remainder of this introduction introduces the three research objectives, 1) identifica-
tion, 2) contamination, and 3) traceability. The motivations and limitations for each objective
are given.

1.4 Identification

Identification provides relevant information to profile a sample of marine biomass. These
profiles include, but are not limited to, the species of the fish, and the body part from which
the sample was taken. In fish processing, a fish once rendered into a minced product, paste
or oil, is completely unrecognizable from when it freely swam the oceans. Therefore, chem-
istry techniques can be used to retrieve this lost information and identify the contents of
rendered marine biomass. Useful characteristics, such as species, and body parts; help de-
cide how best to use that marine biomass. For example, due to variations in chemical com-
position between species and parts, some contain larger quantities of fatty oils, they can be
repurposed into Omega-3 supplements. The Cyber-Marine flex-factory [5] aims to maxi-
mize waste utilization of marine biomass. Therefore, identifying characteristics of marine
biomass waste, such as its species and body part, is useful. This knowledge informs de-
cisions on how best to reduce, reuse and recycle that waste, to maximize the value of that
marine biomass.

1.4.1 Motivations

Biomass analysis - Existing works into identification of biomass, let alone marine biomass, us-
ing rapid spectrometry are limited [14, 15]. Due to rapid evaporative ionisation mass spec-
trometry (REIMS) [16] being a recent technological development in chemistry, and the dif-
fusion of innovation [17], access to the REIMS mass spectrometer, and subsequent research,
and real-world applications of said technology, is sparse. The tools are cost-prohibitive for
widespread adoption and use in industry. However, as part of the greater Cyber-Marine
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research project [5] serves as a proof-of-concept, for the adoption of REIMS for rapid anal-
ysis of marine biomass in the factory of the future - the flex-factory. This research aims
will show the viability of rapid mass spectrometry in real-world applications of fish pro-
cessing. Rapid spectrometry has been shown effective in detecting adulteration in biomass,
[14] found beef mince that was contaminated with horse meat. Adulteration is the (often
criminal) process of debasing the quality of food products, by intentionally mixing them
with products of lower value, to maximize profits, and dishonestly selling them labelled as
ONLY the higher value product [16]. The study, [14], showed that REIMS can detect adul-
teration of beef samples with cross-species contamination at levels as low as 1%, for certain
horse-meat offal. Rapid spectrometry has demonstrated a use-case in marine biomass when
identifying species of marine biomass for the real-world application of fish fraud detection.
Previous works demonstrate that REIMS can be used to combat fraud and adulteration in
food processing. This research aims to apply this method of analysis for determining the
bulk composition and quality of marine biomass.

Variable marine biomass - Firstly, to apply rapid mass spectrometry methods to fish processing
in New Zealand, the proposal tackles the unique market of New Zealand’s seafood indus-
try. Unlike other countries, for example, Canada or the United States, New Zealand has a
high variability in marine biomass. In layman’s terms, when a catch comes in from a fishing
vessel, there is a diverse range of species, in that catch. The catches coming from trawl-
ing vessels in Canada or the United States consist mostly of one species - a homogeneous
composition of marine biomass. However, the catches coming in from New Zealand ves-
sels, consist of a diverse range of species - a heterogeneous composition of marine biomass.
This translates to a multi-class problem with many classes in machine learning. This work
focuses on a binary classification problem with a dataset containing two fish species. But
leaves open the possibility of multi-class classification, as more classes of species could be
introduced to the problem when new training classes of training instances become available
in future datasets. The real-world problem of heterogenous fish species classification in New
Zealand is a multi-class classification problem. It is more complex than the research prob-
lem and example dataset this work solves. Future work would look to extend the binary
classification algorithms developed here, to handle multi-class classification of fish species,
for real-world application in NZ fish processing.

Data scarcity - Secondly, a factor unique to New Zealand’s seafood industry, and due to
a much smaller fishing fleet and population, is a low sample size. Large trawling ves-
sels in international waters, or the United States or Canada, have a large volume of ho-
mogeneous marine biomass, to collect and analyze with chemistry methods. Due to New
Zealand’s smaller size, and isolated geographical location, there is a much smaller volume
of fish to create datasets from for analysis via chemistry techniques. As demonstrated in
previous works [18], fish analysis for New Zealand marine biomass, is performed on high-
dimensional data with data scarcity. Mutli-class problems with data scarcity shelf the stock-
standard toolkit of deep learning methods. With data scarcity, DL methods risk overfit-
ting by memorizing the training data, and not generalizing well on unseen data. The data
scarcity requires an algorithm that is sample efficient, DL methods are often not sample effi-
cient at all, as they (often) require thousands of samples to achieve reasonable performance
at a given task. Furthermore, they don’t produce interpretable models, that can be under-
stood easily, by domain experts in chemistry and fish processing, nor can their results be
verified and troubleshot in their real-world application, the Cyber-Marine flex-factory [5],
for which they would be deployed.
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Seasonal variation - Thirdly, a problem not unique to New Zealand marine biomass, and
widely applicable to other marine biomass - is seasonal variation. The chemical composi-
tion of marine biomass changes dramatically, in periodic and reoccurring patterns, related
to the behaviour of those fish. Take Hoki for example, a fish found in the Pacific Ocean
in Australia and New Zealand, a fish species class for classification in this research. When
spawning, the female Hoki extracts (almost) all her lipids to give as nutrients to her eggs [3].
This dramatically changes the chemical composition, specifically the lipid profile.

1.4.2 Limitations

Multi-class multi-label classification - The limitations of existing work in biomass analysis us-
ing rapid spectrometry are in their application. Thus far, existing literature has only applied
biomass analysis for simple statistical applications, more complex and insightful down-
stream machine learning tasks have not been considered. [15] performs contamination de-
tection by identifying outliers. However, it is not capable of analysis or quantification of
the contamination it detects. [14] performs multi-class classification on a dataset with five
species of white fish. It predicts one species, therefore is a single-label prediction multi-class
classification task. The research is also only limited to white fish species. The model cannot
handle cross-species contamination, where a sample contains biomass from one (or more)
species of fish, or other types of marine biomass, such as oily fish, salmonid, shellfish, flat-
fish, tropical fish, freshwater, ... etc. Existing work [14] is geared towards homogeneous
marine biomass typical of incoming trawling vessels in international waters, or countries
like Canada, United States, or Norway [4]. Thus far, no work is focused on classification of
diverse fish species, i.e. heterogeneous species with both white fish and oily fish, simulta-
neously.

Data scarcity - In rapid spectrometry, there exist few datasets for New Zealand’s unique
marine biomass. NZ has highly variable biomass. Therefore existing artificial intelligence
(AI) models, are not well suited for the niche NZ seafood industry [14]. This research uses
datasets of chemical analysis of marine biomass, for a niche seafood market. There are lim-
ited (next to no) existing datasets for this specific task, to draw from to increase the sample
sufficiency. That was the motivation for the Cyber-Marine project [5] to produce these rapid
spectrometry datasets in the first place. Due to the availability and cost of the REIMS mea-
surement, the domain expertise required to operate it, and the niche of its application to the
seafood industry, the dataset contains few samples. Each sample is high-dimensional due
to the fine-grain resolution of spectrometry methods. High-dimensional data scarcity data
is typical of fish oil analysis using chemistry techniques [18]. There exists one paper, [14],
that performs REIMS for marine biomass, however, this was not in New Zealand. The ma-
rine biomass of each country is unique, both in its variability, and chemical composition of
those species. New Zealand has a niche seafood ecosystem, different to Canada, Norway or
the United States. A model trained for salmon processing in Norway will not work out-of-
the-box on Hoki in New Zealand. Therefore, New Zealand’s seafood industry requires AI
models trained for its unique fish species and the low volume of data available for them.

Interpretability crisis - in safety-critical applications, e.g. human-grade seafood products, the
biggest limitation is industry adoption. Industry is cautious to adopt new methods and
techniques, as they introduce risk and uncertainty. Black-box AI techniques add to that un-
certainty, by producing accurate models that work most of the time, but when they fail, there
is no explanation or cause to diagnose. The explainability crisis nearly ground research on
large language model (LLM)s to a halt. There was an open letter and petition to pause giant
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AI experiments for 6 months [19], with notable signatories in that letter [19], such as Yoshua
Bengio [20], Stuart Russell [21], Elon Musk (SpaceX, Tesla) and Steven Wozniak (Microsoft
co-founder). More recently, Geoffrey Hinton, the ”Godfather of AI” [22] left Google AI, with
fears the generative artificial intelligence arms race will cause real-world harm. The claims
of real-world harm and danger surrounding LLMs derive from the black-box nature of these
models. Humans cannot understand their process, from input to output, as the weight ma-
trices of a 32+ billion parameter deep neural network. Recall Arthur C. Clarke, and note that
a technology that is not understood don’t is equivalent to magic. If industries are cautious
about new technologies that are well understood, the black magic of neural networks [23],
is going to be a hard sell. Existing works, [14, 15] perform dimensionality reduction that ob-
fuscates the meaning of its features. The results are accurate, but humans, more specifically
the domain experts in biochemistry and fish processing, cannot understand and interpret
the model.

Concept drift - AI techniques require robustness to concept drift. A naive machine learn-
ing model, that is not robust to seasonal variation, may misclassify this adult female Hoki
after spawning, not recognizing the mother as a Hoki, absent of her lipids. The phenomena
of seasonal variation draw parallels to concept drift from data mining [24, 25]. Concept drift
describes the shift in the distribution of data over time, in (possibly) reoccurring or peri-
odic nature. To apply AI techniques for fish processing in New Zealand, robust models that
can handle concept drift such as seasonal variation, are needed, for real-world applications
to deliver (any) commercial value. A robust model impervious to concept drift would be
seasonal invariant.

Everything should be made as
simple as possible, but not
simpler [26].

Albert Einstein (attributed)
Physicist, Nobel Prize (1921)

1.5 Quantitative Contaminant Analysis

Contamination detection can detect contaminants such as cross-species - where two species
of fish are mixed together in one sample, or mineral oil - where oil from the fishing vessels
engine or factory machinery has spoilt the marine biomass. This method can identify poten-
tial hazards and/or quality control issues in fish processing. It can help ensure the Cyber-
Marine flex-factory [5] is running smoothly, and verify it can produce food grade products
that are safe for human consumption [27]. Contamination detection can be implemented in
three stages, detection - binary classification, analysis - multi-label classification, quantification
- multi-output regression.

1.5.1 Motivations

Existing works address the problem in part, however, none address it in its totality. The end
goal of this research is to create a novel and effective method for contamination detection of
marine biomass in the Cyber-Marine flex-factory [5], via rapid spectrometry. REIMS have
proven an effective tool for identifying spoilage in livestock and seafood products [15, 15].
In response to scandals like the 2013 horse-meat scandal, [15] showed rapid spectrometry
can identify adulteration of beef products with horse-meat offal, in concentrations as small
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as 1% (for certain offal). This work uses supervised learning techniques of PCA-LDA [28, 29]
with thresholding to detect outliers. This tackles the problem of cross-species contamination
detection, an area addressed in this proposal. Previous work of the same author, [14], uses
the same technique for fish fraud detection, to find fish products that have been mislabelled.
[14] is a binary classification task of fish species prediction, that employs the same super-
vised learning techniques of PCA-LDA, on REIMS data for fish. More advanced artificial
intelligence techniques, such as generative adversarial networks (GAN)s in the work [30],
have been applied to anomaly detection in factory settings. These also rely on thresholding
techniques to identify outliers, which indicate factory equipment that has likely malfunc-
tioned.

Detection - The first task is a simple binary classification - given a sample, a positive class
is contaminated, and a negative class is not. Take for example cross-species contamination,
a sample with a mix of Hoki and Mackerel would be positive. A sample with only Hoki
would be negative.

Analysis - The second task extends this to multi-label classification, each instance may be-
long to multiple classes. For example, a contaminated sample may contain, 30% Hoki and
70% Mackerel, this sample label would be [ Hoki, Mackerel ]. In contrast to the binary clas-
sification problem, the model would also have to be able to distinguish between [ Hoki ], [
Mackerel ], [ Hoki, Mackerel ]. For binary classification, both [ Hoki ], [ Mackerel ] would
simply be negative, not contaminated. But for multi-label classification, both the individual
species and their combination, are combined to give the label annotation. It is a multi-
label classification because an instance can belong to one or more classes. In the extreme,
an instance may contain a mixture of two fish species and mineral oil, which would be-
long to three separate classes. The machine learning model would output a prediction that
identifies all of those classes, e.g. [Hoki],[Mackeral],[Mineral Oil]. Furthermore, the outlier
thresholding may detect an unknown fish species or foreign contaminant, giving the reduc-
tio ad absurdum example of a fish instance whose output label would be [Hoki], [Mackeral],
[Unknown species], [Mineral Oil], [Unknown contaminant]. The possible mixture of multi-
ple known, and unknown fish species and contaminants, and the combinatorially explosive
nature of their class label powerset, makes multi-label classification, a feasible solution for
training a classification model.

Quantification - The third task extends the previous two tasks, to associate a percentage of
contamination associated with each contaminant. Not only does it perform the previous two
tasks, contamination detection, and contamination analysis, it then provides quantification
to those contaminants that it has identified. Recall the example from earlier, with 30% Hoki
and 70% Mackerel. Quantification would identify two classes present, and their relative con-
tribution to the same, i.e. [ Hoki - 30%, Mackerel - 70% ]. This is a multi-output multi-label
regression. The annotated label is similar to the softmax [31] function on an output layer of
the neural network, which normalizes the output layer of that neural network to sum to 1,
to fit a probability distribution. Contamination detection has to be real-time, analysis and
quantification can be done ”offline”, once a samples has been isolated and marked for fol-
low up examination. It would be more efficient to only perform analysis and quantification
on samples identified as contaminated. This speeds up the factory throughput by remov-
ing redundancy. The model’s uncertainty as to which class an instance belongs to can be
captured by the softmax operator’s probability distribution for each class label. However,
this uncertainty for each class, can’t be conflated with its confidence in the relative contam-
ination percentages for each class. To clarify, the model confusion in classification output,
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is not the same as the presence of multi-class contamination, be it cross-species or mineral
oil. If the model is uncertain about which class an instance belongs to, it does not imply the
model is certain that the instance is contaminated. These are separate tasks and need to be
treated as such. Otherwise, the model is left doing a lousy job at both tasks simultaneously.
Instead, the model should recognize the distinction, and perform both tasks separately with
high accuracy.

In summary, relative probabilities for each class do not necessarily map to relative pro-
portions of contamination. The model being confused over which classes a sample belongs
to, should not be mistaken for contamination detection. Contamination detection is agnostic
of the model’s certainty for multi-class predictions. The distinction is important.

1.5.2 Limitations

No qualitative analysis - The existing work in fish fraud detection [14], is limited as it is for
multi-class classification only, it does not provide a model for cross-species contamination,
where a single sample may contain fish from two (or more) species. Black [15] provides
adulteration detection with thresholding techniques to identify outliers. The existing litera-
ture, [14, 15, 10]on rapid mass spectrometry data has only applied PCA-LDA to adulteration
detection in biomass. GC-MS analysis has used CNNs for high-accuracy black-box predic-
tions of downstream classification tasks, such as flavour profiling [32]. Similar work, [30],
has shown the promise of GANs for outlier thresholding in anomaly detection. However,
more recent innovations in deep learning should be considered also. However, no qualita-
tive profiling of those outliers is given. Their technique does not say what the adulterant
is, and to what concentration it is present. This is due to the nature of the thresholding
technique for outlier detection.

Domain Expertise - The GANs used in [30], are advantageous over the PCA-LDA methods
proposed in [14, 15], as they require less manual parameter tuning and domain expertise in
the application, however, they produce black-box models, which can’t be trusted or under-
stood when deployed in fish processing.

Interpretability - Similar to GANs [30], the PCA-LDA [28, 29] used in [14, 15] produce
feature embedding that are not interpretable either. principal component analysis (PCA) is
a dimensionality reduction technique that projects features from a high-dimensional space,
into a lower-dimensional space. By projecting along the top k eigenvectors of the covari-
ance matrix [20] The principal components are linear combinations of the original features,
and their interpretation concerning the original features is not straightforward. The PCA di-
mensionality reduction technique seeks to preserve the variance of the data, but the original
semantic meaning of the features is lost.

GANs / deep learning - There are limitations of GANs [33, 34] from [30]. As they belong
to the family of deep learning methods [20], they require computing resources, high sample
complexity, and intricate hyperparameter tuning.

Specific, to GANs they are susceptible to training instability, mode collapse and out-
putting the mode of the data distribution. Mode collapse occurs when the generator fails
to produce samples with sufficient diversity or variation. Resulting in a network that gen-
erates a few similar or identical outputs. It collapses multiple modes or variations of the
target distribution into a single output mode - hence the name. Mode collapse is a specific
type of limited diversity. But other scenarios, such as imbalanced training data, too simple
generator network architecture, or, not enough training, can lead to limited diversity. This
is where their generator fails to capture the complexity of the target distribution. Training
instability is a common problem for GANs. They don’t have a simple objective function.
Instead, they aim to approximate the Nash equilibrium between a generator and discrimi-
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nator network. This is a min-max game between adversarial networks, hence the name, i.e.
generative adversarial networks (GAN). The generator attempts to produce samples indis-
tinguishable from the real data. The discriminator attempts to spot the difference between
the real and fake samples. The Nash equilibrium occurs when the generator can produce
samples indistinguishable from the real data, i.e. the discriminator can no longer tell the
difference. This Nash equilibrium is a more difficult objective function than say Kullback-
Leibler (KL) divergence [35], or categorical cross-entropy (which can be derived from KL
divergence [20]) for classification tasks.

1.6 Traceability

Traceability deals with isolating a contaminated sample, to track the origin, and identify
potential causes for that contamination. The previous subsection addressed contamination,
once a contaminated sample is found, a factory seeks to find ALL other marine biomass
that originated from the same origin, that same sample, to isolate and discard the poten-
tially hazardous samples, that are likely not safe for human consumption [27]. To do so,
traceability must identify the unique characters of an individual sample, not just the species
or body part, but unique characters that distinguish ONE particular fish, from the others.
In computer vision, this is referred to as instance recognition [36]. Existing works related
to traceability can be found in computer vision, those include instance segmentation [37],
instance identification [38], and contrastive learning [39, 40, 41].

1.6.1 Motivations

Detection - Contrastive learning is an effective technique for few-shot learning pair-wise
comparison, e.g. same-fish detection for traceability. Siamese neural networks, proposed
in 1993 by LeCun [39], and prominent today in deep learning for object detection and seg-
mentation [41], and ransomware classification [40]. Siamese neural networks are a type of
contrastive learning. Contrastive learning is a type of unsupervised learning where the goal
is to learn a similarity metric between two inputs, by contrasting them with other inputs.
A similar method concept to the thresholding method for detecting outliers was previously
mentioned in [14, 15]. However, contrastive learning is useful for few-shot learning for three
reasons: (1) it allows efficient use of small amounts of labelled data, (2) it can leverage la-
belled and unlabeled data to learn robust and discriminative representations of the data,
improving the model’s ability to generalize to new classes with only a few labelled exam-
ples, (3) by learning to contrast similar and dissimilar examples, the model can develop a
rich understanding of the underlying structure of the data, which can further improve its
ability to generalize to new classes with few labelled examples. The REIMS dataset contains
very few training instances. For the instance recognition task, there are fewer. As individ-
ual fish may only have a few (or single) labelled examples per instance. Therefore, instance
recognition can be considered a few-shot, or in extreme cases a one-shot, learning problem.
Traditional machine learning models often require large amounts of labelled data to achieve
high performance, whereas few-shot learning specializes in training models to learn quickly
from only a few examples. Due to the low sample sufficiency, and few-shot nature of the
instance recognition ask, this research aims to amortize the training data, to allow for few-
shot or even one-shot inference on unseen data. This amortization can be achieved through
self-supervised contrastive learning, such as Siamese networks, or transfer learning, where
models share information between related tasks, to improve performance on new related
tasks. This research is going to semi-supervised contrastive learning on publicly available
mass spectrometry datasets, to improve the few-shot similarity learning performance on

10



novel mass spectrometry datasets with limited training instances. Semi-supervised learning
implies a mix of self-supervised similarity-based learning on unlabelled datasets from dif-
ferent tasks, in combination with supervised few-shot learning on the target domain mass
spectrometry dataset with annotated class labels. In short, similarity-based learning on a
large corpus of mass spectrometry data, to improve few-short similarity-based learning on
a specific mass spectrometry individual detection and instance recognition task.

Instance recognition - It is commonly used in various fields such as wildlife monitoring, se-
curity surveillance, and biometrics. To avoid confusion, the term instance recognition from
computer vision, is not to be confused with instance identification [38], or instance segmen-
tation [37]. However, in the domain of fish processing, and chemical analysis via rapid mass
spectrometry, the term sample attribution is fitting for the real-world application. Thus, for
a Chemist and AI Researcher, the terms sample attribution and instance recognition can be
considered equivalent and used interchangeably.

Existing work for instance recognition task can be found in computer vision [36, 42, 43].
In [42], the authors propose HotSpotter a model to recognize instances based on their unique
spots. This is a species invariant model, that differentiates between dissimilar species, e.g.
zebras, giraffes, leopards, and lionfish. Fish and mammals are dissimilar but share spots.
[42] was trained on a database with 1,000 images with five different species of animals,
approximately 200 images per class. While images are far from rapid mass spectrometry
data, this research aims to perform a similar task, by providing a species-invariant model
that differentiates between dissimilar species of fish, e.g. whitefish and oily fish, based on
their unique chemical compositions. The work of [43] proposed a multi-modal instance
recognition that employs dense feature extraction on multi-modal features. This model is
benchmarked on the Willow dataset from [44], which contains 37 views of 37 different ob-
jects (37 x 35 = 1295 images total) to be detected in a variety of tabletop scenes. Similar to
[42], the classes are dissimilar objects, that must be uniquely identified from multiple ob-
servations of that same object. This work [43] was trained on a dataset of similar size to
[42], with 1,295 and 1,000 images, respectively. Datasets with sample sufficiency, i.e. more
than 1,000 instances, are naturally suited towards deep learning methods that require large
volumes of data. Traceability must perform the same task. To uniquely identify marine
biomass from multiple observations. In [43, 42] the observations are images - a computer vi-
sion task. However, in this research, the observations are rapid evaporative ionisation mass
spectrometry (REIMS) measurements - a chemical analysis task. Although different fields, a
mass spectrograph and pixel image are similar, they share local connectivity in their multi-
dimensional representation, where values close to each other are related, and their proximity
to each other is information in itself. In [36], they take instance recognition one step further
than [43], with single-view instance recognition. They employ a general-to-specific training
procedure, that pretrains the neural network on problems, of increasing granularity. The
network is pretrained on a large multi-view dataset and then fine-tuned on a smaller single-
view dataset. The neural network takes a feature embedding representation learnt from a
general task, that can be transferred and applied to a more specific task. The largest multi-
view dataset has 100 images of 124 objects (100 x 124 = 124,000 images total). The smallest
single-view dataset has 1 view for 300 objects. In contrast to other works [43, 42], whose
datasets contain more than 1,000 instances, this is a one-shot classification task with very
few training instances. The REIMS dataset has 306 samples of marine biomass. Training on
generalized tasks that are related, but where greater volumes of data are available, can im-
prove the few or single-shot classification performance on datasets with data scarcity (few
training instances).
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1.6.2 Limitations

Few-shot learning - Traceability, or instance recognition, is the most difficult task proposed
in this research. Few-shot and similarity-based learning methods perform better on out-of-
distribution data when compared to traditional learning methods. This property is helpful
for finding outliers, whose contamination or species is unknown, i.e. not in the training set.
It is a few-shot (or in the extreme one-shot) learning task on a dataset with data scarcity.
Therefore, with limited training instances, this work aims to maximize the knowledge that
can be extracted from each instance - the amortization of data. Another way to achieve
amortization is through transfer learning. To learn on a more general task, and transfer that
knowledge to a more specific task through fine-tuning, as seen in [36] for single-view in-
stance recognition.

Siamese networks - Alternatively to pretraining, Siamese networks [39, 41, 40] is another effec-
tive technique for few-shot contrastive learning. Contrastive learning is a useful technique
for data scarcity datasets, where sample efficiency is critical. Deep learning techniques, like
Siamese networks, are very computationally expensive to train and often require dedicated
hardware, such as GPU clusters. Deep neural networks are very sensitive to their parameter-
ization and require extensive hyper-parameter tuning that lacks theory and is comparable to
black magic. In fact [23], coined the term ”Grad Student Descent” to describe the brute-force
trial and error based-process of tuning parameters for deep neural nets. Those were limita-
tions of deep learning methods in general. However, a limitation unique and specific to this
research is the representation. Siamese networks [39, 41, 40] typically require a fixed-length
input. However, as shown in [14, 15], there is flexibility in mass spectrometry for variable-
length inputs. Chemists can increase the resolution to get more features, i.e. longer-length
input. Conversely, they can decrease the resolution to get shorter-length input. A model
that cannot handle variable-length inputs is not robust, it could only be trained and tested
on datasets with a fixed resolution, that fixed resolution being the original fixed-length in-
put of the measurements it was trained on.

Only computer vision - Existing work on traceability is limited to the related task of instance
recognition from computer vision. Works [42, 43, 36] show applications of instance recog-
nition for dissimilar classes, [36] extends this for one-shot instance recognition with data
scarcity. Both [42] [43] require large sample complexity - a high volume of training data to
work. Many deep learning and traditional machine learning methods require many train-
ing instances to achieve high-quality performance. The REIMS dataset in this research is
scarce on data, with only 306 training instances. These deep learning and traditional ma-
chine learning techniques will not work out of the box on a dataset with data scarcity. In
extreme cases, there may likely not be sufficient data for these models to fit data. It is more
likely that these models will overfit the training data, and fail to generalize on unseen data.
However, it is possible to use pretraining (or transfer learning) to allow for few or one-shot
learning on a dataset with data scarcity, as shown in [36]. The limitations of [42], are being a
relatively dated paper, 2012 paper [45] that proposed local naive bayes nearest neighbours
(LNBNN), an extension of naive bayes nearest neighbours (NBNN) [46], where ”only the
classes represented in the local neighbourhood of a descriptor contribute significantly and
reliably to their posterior probability estimates”. The authors admit LNBNN, did not beat
state-of-the-art methods such as feature pyramid networks [47], which rely on local soft as-
signment and max pooling operators. Convolutions and max-pooling are utilized in convo-
lutional neural networks (CNN)s [48], a powerful model for computer vision-related tasks.
With advancements in hardware and the lifting of the AI winter, are efficient to train at scale
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using GPUs. Since then, a plethora of convolutional neural networks (CNN) architectures
dominate computer-vision tasks, such as LeNet [48, 49, 50, 51], AlexNet [52], VGG-16 [53],
GoogLeNet [54], ResNet [55].

1.7 Research goals

This application-driven research aims to implement real-time (online) fish contamination
detection and identification. This is a supervised machine learning task trained on scarce
rapid evaporative ionisation mass spectrometry (REIMS) [12] fish oil dataset. Specifically,
this proposal outlines the need for algorithms to perform the following tasks summarized
in figure 1.1.

Start

REIMS

DIMS

Identification Binary Classification Species

Multi-class Classification Part

Quantitative
Contaminant

Analysis
Binary Classification Detection

Mutli-label
classification

Analysis

Multi-output
regression Quantification

Traceability Pair-wise comparison Detection

Instance Recognition Sample
Attribution

Figure 1.1: Research goals

Starting from the left, the chart shows two mass spectrometry datasets, REIMS and
DIMS. These datasets are used for 3 tasks, each delimited by a dotted box. Each task can
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be broken down into machine-learning techniques, and downstream applications in the fish
processing domain. The tasks, and their retrospective sub-tasks, are given in ascending or-
der of assumed difficulty, top-to-bottom from easy to hard.

The remainder of this section elaborates on concepts given both above and in figure 1.1.
Each task is clearly defined concerning chemistry, fish processing and machine learning.
This section is excellent reference material for downstream applications of machine learning
in fish processing presented in this proposal.

1.7.1 Identification

Identification is the process of identifying characteristics of a sample. In particular, given a
fish tissue sample, identification has two sub-tasks, (1) predict the species of the fish, a binary
classification task, and (2) predict the part of the fish, a multi-class classification task

Species - the first sub-task is concerned with predicting the species of the fish. For the mass
spectrometry datasets provided, there are two species of fish, Hoki and Mackerel shown in
figure 1.3. This sets up a binary classification problem, to predict the species of fish. From
the figure, a human could easily make the distinction between species by eye. The eager
AI researcher may construct this problem as a computer vision task. However, in a factory
setting, once fish is gutted, filleted, minced or otherwise processed, the samples become
a homogeneous blend of marine biomass. No longer a trivial computer vision task, more
complex methods of rapid mass-spectrometry are used to determine the characteristics of
that marine biomass.

Figure 1.2: Hoki Macruronus novaezelandiae

Figure 1.3: Mackerel Trachurus symmetricus

Part - the second sub-task is to predict the part (or tissue) where the measurement was
taken. For these mass spectrometry datasets, there are six different classes of fish parts, e.g.
fillet, liver, skin, guts, frame, and heads. This is trickier than the species identification be-
cause there are more than two classes. This constructs a multi-class classification problem,
where a model predicts the fish part given many classes. Previous work [18] on chemistry
datasets has also demonstrated that classifying fish parts proves more difficult than species.
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This is perhaps because there are more differences between two different species than there
are similarities between the same part, but from different species. This work however was
on Gas Chromatography datasets, which differ from the Mass Spectrometry dataset here.

This work tackles both these limitations - to offer models that (1) require little domain ex-
pertise or manual hyper-parameter tuning, and (2) produce models that are explainable
and can be understood, trusted, and verified by those operating them in the flex-factory.
This work seeks to address the interpretability limitations of existing works, by produc-
ing accurate models that can be understood by domain experts in the application domain
of biochemistry and fish processing. The feature embedding of the models will be ”mass-
spectrometrically” [sic] meaningful - semantically meaningful in their application domain.
Models that preserve interpretability, and explainable AI, can be verified and troubleshot
easily, and provide new insights and knowledge to those domain experts using them. With
explainable AI tools and domain experts using them, the AI does not aim to automate or re-
place their job, it helps aid their understanding to enhance their ability. AI tools that can be
understood by the domain experts, can be trusted and relied on, which is critical for indus-
try adoption. Other types of fish, such as salmonid, shellfish and freshwater are excluded,
as salmonid and shellfish typically belong to aquaculture [1]. Freshwater fish are caught in
lakes and rivers, not the salt-water trawling vessels that are the scope of the Cyber-Marine
flex-factory [5]. These types of fish can be excluded from the scope of the research, as they
come from different sources entirely, and don’t require sorting via rapid mass spectrometry
analysis.

1.7.2 Quantitative Contaminant Analysis

Qualitative contaminant analysis (QCA) is concerned with spoiled fish products. Identi-
fying spoilage in fish products is needed for quality assurance in the flex-factory. QCA
involves defining contaminants at three levels of granularity. These sub-tasks are given in
ascending order of difficulty (top-to-bottom from easy to hard), (1) Detection, (2) Analysis,
and (3) Quantification.

Detection - the first sub-task identifies if samples are contaminated. Contamination detec-
tion constructs a binary classification task, that predicts true or false if a sample is contami-
nated. Detection is unaware of which contaminants are present, and be thought of as a red
flag, that warrants further investigation. In a factory setting, the detection task may provide
higher recall than other models. An accurate contamination detection model can be used to
identify areas of concern where future investigation may be warranted.

Analysis - the second sub-task identifies which contaminants are present. Contamination
analysis tasks detection on step further. Not only does it identify samples that are contam-
inated, but the analysis also says which contaminants are present in that sample. For the
mass-spectrometry datasets given, there are two forms of contamination, mineral oil and
cross-species. Either an individual model can be trained for each task, or an overarching
model which analyzes both.

Quantification - the third and hardest sub-task is quantification. This performs the first two
sub-tasks implicitly, with the added difficulty of providing a percentage ratio for that con-
tamination. Contamination quantification constructs a multi-output regression problem,
that predicts the contaminants present, and their respective percentage that contaminant
contributes to the composition of the sample. Take for example quantification for cross-
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species contamination. Consider a contaminated sample with a mixture of both Hoki and
Mackerel fish species. Quantification would tell you what percentage of that contaminated
sample is Hoki, and what percentage is Mackerel. Alternatively, for mineral oil contami-
nation, quantification would predict what percentage of the sample is mineral oil, and the
rest fish. This task is similar to a softmax activation [31] as the final layer of a neural net-
work. For a multi-class problem with each class indexed in a vector, the value at each index
would correspond to the probability of that class, and the vector represents a probability
distribution (which sums to 1). The quantification problem assumes the composition of
known classes makes up the entire sample. For example, for cross-species contamination,
if quantification predicts 33% Hoki, the remaining (100%− 33%) = 67% would be Mackerel.

A model with too many false positives would result in many fish that have not been spoiled
being thrown away, which is not practical in a commercial setting of fish processing, where
profit margins drive decisions. Conversely, a model with too many false negatives would let
too many contaminated fish slip through into fish products and has the potential to cause
real-world harm to consumers. Both of these models would have no commercial value if
they fail to identify contamination with accuracy metrics suited to the task. Furthermore, the
black-box generative adversarial networks (GAN)s [30], or obfuscated PCA-LDA [14, 15],
aren’t ideal for qualitative and quantitative analysis. If the model consistently and correctly
identifies contamination, workers at the fish processing factory would want to know what
that is, and seek to remove the source of the problem. Neither, inscrutable matrices of float-
ing points [30], nor obfuscated principal components, help those workers to identify the root
cause of the problems. This work seeks to address limitations of interpretability for contam-
ination detection, by providing accurate models for contamination detection, that can also
provide qualitative and quantitative analysis of what those contaminants were. Therefore
the representation of the model needs to be interpretable to domain experts in chemistry, and
the application of fish processing. Therefore, the feature embedding must be mass spectro-
graphically [sic] meaningful, and relevant for marine biomass. This work seeks models that
don’t just give the right answers but also can show their work, and provide insight. This
work seeks to address the limitations of GANs anomaly detection [30]. As mentioned be-
fore, GANs, require expensive computational resources, are sensitive to hyperparameters,
and a large volume of data; and, suffer from mode collapse, training instability and limited
diversity. This work is hardware-constrained, as it must perform inference in real-time, on
commodity hardware in a factory setting.

1.7.3 Traceability

In a fish processing factory, samples close to the detected source of contamination can be
tested to see if they originate from the sample. Instead, there are two samples and the
model detects if they come from the same fish. This constructs a pair-wise binary classifi-
cation problem, given two samples, to predict if they came from the same fish. In layman’s
terms ”same fish detection”. Sample detection is agnostic to individual samples, it merely
predicts whether two fish are the same, but does not append a unique identifier to that fish.
However, sample attribution does this.

Sample attribution - The second sub-task is an extension of detection. Sample attribution
is not just interested in if two samples are from the same fish. It is concerned with keeping
track of those individual fish too. The goal of sample attribution is to allow for comprehen-
sive troubleshooting for contamination detection on the assembly line. Should a contami-
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nant, known or unknown, be identified, staff at the fish processing factory are interested in
knowing the scale of that impact. Traceability offers new diagnostic tools that can track an
individual marine biomass sample path throughout an assembly line, relying on machine
learning analysis of rapid mass spectrometry alone. Sample attribution would take a batch
of fish samples and could identify and isolate the individual fish present in that batch. This
is a similar concept to semantic instance segmentation from computer vision. Both tasks are
not only interested in distinguishing between classes but look to uniquely identify individ-
ual instances. Sample attribution is likely the most difficult task proposed in this research,
as it requires a very sensitive model to learn individual fish from very-few shot learning. It
must account for seasonal variation and distinguish between different species of fish, where
each species has a different variance. Initial findings from PFR [6] showed there was more
variation in individual Hoki samples taken from the same fish than there was from different
Mackerel.

(Optional) Multi-sample attribution - A more complex form of this problem is multi-instance
recognition, where a sample can contain multiple unique instances, for which a classifier
model must identify each unique individual present. Multi-instance recognition identifies
unique markers for one or an individual fish that may be present in a sample. This is a
species case of cross-species contamination, where an instance contains two species of fish,
and the model provides unique identifiers for each individual fish. This would prove useful
in isolating and containing sources of contamination in fish processing when factory work-
ers want to assess how widespread systemic contamination is within the assembly line. This
task could be formed with the cross-species or mineral oil contamination data, from the pre-
vious research objective. This research objective is marked as (Optional), should time allow,
this is an interesting direction to explore. Alternatively, this could make an interesting field
for future research.

This work seeks to address the interpretability limitations of existing work [14, 15] by fo-
cusing on transparent, explainable and semantically meaningful models [56, 57, 58]. For
industry adoption and application of real-world AI, models are needed that enhance the
existing knowledge of domain experts and assist them in their roles. Rather than existing
works [14, 15], which get the same answers (most of the time), but refuse to show their
working in a way that can be understood by humans. Transparency and explainability are
required to be trusted and used in real-world applications. To address the general limita-
tions of deep learning methods, i.e. compute, sample complexity, and grad student descent;
this research proposes models that can perform real-time inference deployed on commod-
ity hardware in a factory. This does not rule out deep learning methods entirely, it simply
suggests that once effective methods are found, they would have to be optimized for deploy-
ment on commodity hardware. These models would also have to handle data scarcity in a
few-shot learning task. And remove domain expertise in chemistry and machine learning,
by automating the parameterization of network architectures. Neural architecture search
(NAS) [59, 60, 61, 62, 63] can be used to automate the selection of neural network architec-
tures, or, evolutionary computation [64] methods such as genetic programming [65] meth-
ods provide an alternative to neural networks altogether. Both approaches remove the need
for domain expertise in deep learning and the application domain (i.e. chemistry). Variable-
length input allows for pretraining or transfer learning on other mass spectrometry datasets
measured at different resolutions. This allows the possiblity for semi-supervised / unsuper-
vised learning methods to be applied to a vast array of publicly available mass spectrome-
try datasets. To address the limitation of fixed-length input in existing work on contrastive
learning [39, 41, 40], this research proposes a flexible model that can handle variable-length
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input. Compared to each other, the REIMS and DIMS datasets are low-resolution and high-
resolution, respectively. A variable-length input model would be robust, and applicable
to both datasets. An additional bonus of variable-length input is that the model is natu-
rally suited to pretraining or transfer learning on other mass-spectrometry datasets each
taken at different resolutions. This is particularly important for the few-shot learning task
of instance recognition, where pretraining and transfer learning, are needed to balance data
scarcity. This research proposes a robust model that is naturally suited to a representation
with variable-length input.

In summary, The proposed machine learning techniques allow for a particular individual
fish species or body part to be tracked throughout a complex assembly line, using only rapid
mass spectrometry data and rapid analysis with machine learning techniques proposed in
this research.

1.8 Summary

Identification Contamination Traceability

Motivations

biomass analysis
variable biomass
data scarcity
seasonal variation

contaminated fish
multi-class/label
profile contaminants

same fish
mark individuals
instance recognition
few/one shot

Limitations

multi-class/label
data scarcity
interpretability
concept drift

no quantification
domain expertise
GANs deep learning

few-shot learning
siamese networks
only computer vision

Tasks
species classification
part classification

detection
analysis
quantification

detection
sample attribution
multi-sample attribution

Existing works

beef adulteration [15]
fish species [14]
fish species & part [18]
REIMS [14, 15]

cross-species [14]
anomaly detection [30]
GANs [33, 34, 30]
PCA-LDA [14, 15]

one-shot [36]
few-shot contrastive [39, 41, 40]
siamese networks [39, 40, 41]
instance recognition [42, 43]

Table 1.1: Summary: limitations, motivations, research goals, and existing works

In table 1.1, the information presented in the introduction chapter is summarized in tabular
form. The table gives the limitations, motivations, research goals, and existing works, each
grouped respectively. This table provides coherence, linking problems in the real-world ap-
plication domain, to the research goals given in this proposal. This is closely related to the
fig. 1.1, which explores those research goals in further detail.

The final section of the introduction provides an overview of the organization for the re-
mainder of the proposal.

1.9 Organization of the proposal

This proposal is divided into four chapters, introduction (this), literature review,preliminary
work, and contributions and project plan. Each chapter and section provides a brief de-
scription of its contents (like this one here) for clarity.
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Readers can acquaint themselves with each chapter and its contents, and read to their
level of expertise and interest. A brief summary of the chapter titles given above is provided
here for clarity. The first chapter, the Introduction, gives the scope of the problem and the
solutions proposed in this work. The second chapter, Literature Review, outlines existing
work in the field and its limitations. The third chapter, Preliminary Work, covers automated
fish oil analysis and exploratory data analysis. The final chapter, Contributions and Project
Plan provides an outline for the thesis and its execution. Please see the table of contents
for a more detailed breakdown of the contents of this proposal. This document is structured
with the suggestions in [66], and with inspiration from the layout of the very usable textbook
and guide to user experience [67].
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Chapter 2

Literature review

This chapter focuses on outlining the existing work in this field. This includes work in the
disciplines of chemistry, fish processing and machine learning. This research is application-
driven, so it focuses on the intersection of those disciplines, and how knowledge can be
transformed into innovation, to transform fish processing with artificial intelligence. This
chapter outlines marine biomass, mass spectrometry, machine learning, evolutionary com-
putation, automated fish classification on GC-MS, and their respective limitations. Finally,
the chapter concludes with a summary, which positions this proposal to address these limi-
tations.

2.1 Marine Biomass

This covers marine biomass - a fancy word for fish (see glossary for disambiguation) - that
is used to describe the incoming raw biological materials that enter the flex-factory. It is
important to note the variability of this biomass, fish wastage is likely to contain a mix of
fish species, body parts, and (potentially) contaminants. Even within a particular given
species of fish, the measurements given by chemistry techniques are susceptible to seasonal
variation in the composition of those fish. This section covers the variability of incoming
marine biomass, contamination/adulteration, and seasonal variation in marine biomass.

Marine biomass has seasonal variation - the chemical composition as measured by mass
spectrometry changes dramatically between seasons. The seasons, caused by Earth’s 23◦ tilt
[68], cause a reoccurring change in the temperature, sunlight and nutrient availability. This
has a significant impact on diets of fish, in the types and quantities of food they consume.
Migration and reproductive behaviour also alter fish chemical composition on regular inter-
vals. Take for example Hoki a common New Zealand whitefish. In the process of spawning,
where fish produce offspring, the females lay eggs and the males fertilize. When the Hoki
produce their eggs, the female extract many of their own lipids, and put them into their
eggs. The spawned female is spent after this process, and her chemical composition has
changed dramatically [3], with a noticeable lack of lipids. Objective 3, sub-objective 2, in-
volves uniquely identifying different individual instances of Hoki. Not just Hoki versus
Mackerel. Important for the robustness of AI models, as they understand the chemical com-
position of fish within a species, can change dramatically with seasonal variation. Intra-class
variation is introduced as a challenge by seasonal variables. An AI model for species pre-
diction of Hoki would need to account for this. Robust models would be able to identify
all Hoki species, regardless of seasonal variation, what is called seasonal invariant. A more
complex model for instance recognition, would perform tasks two fold, identify the species
as Hoki, and use the seasonal variation as a potential marker for an individual. Seasonal
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variation is closely related to conceptual drift from data stream mining [69, 24]. Concept
drift occurs when the underlying distribution of the data changes significantly, e.g. the
spawning Hoki lipid profile. Reoccurring concept drift is where those distribution shifts
occur on a regular and predictable pattern. Drift detection algorithms [70, 25] can be used
to detect reoccuring conceptual drift, and identify seasonal variation in marine biomass. A
flexible system could detect seasonal variation in marine biomass, and then decide which
model is best.

2.2 Mass Spectrometry

This work focuses on two state-of-the-art chemistry techniques,

• Rapid evaporative ionisation mass spectrometry (REIMS) [12]

• Direct infusion mass spectrometry (DIMS) [13]

These are two of the most powerful analytical tools for mass-spectrometry. These tools
are very expensive, but as prices decrease they may be affordable for deployment in a ma-
rine biomass processing facility. REIMS [12] has shown promise in beef processing, where it
was able to detect horse meat contamination in beef. Most impressively, horse meat contam-
ination was detected at 1-5% - very low levels [15]. This demonstrates the REIMS technique
is incredibly sensitive to contamination. REIMS has been applied to fish fraud detection to
identify fish species and identify catch methods for fish products. The method was so ac-
curate it was able to identify incorrectly labelled instances in the training data. However, it
has not been applied to Adulteration detection and identification in marine biomass. This
work applied machine learning algorithms to REIMS data for the tasks of fish species and
part identification, cross-species / mineral oil contamination, identify QC parameters, and
individual identification. The research shall compare the results from REIMS to DIMS - the
direct infusion of lipid extracts from the marine biomass samples. DIMS is much slower
than REIMS, but provides high-resolution measurements as a qualitative benchmark.

Many alternative state-of-the-art chemistry techniques could be considered for the task. The
alternative chemistry techniques that could be considered were:

• Light-based - One approach is to use analytical techniques based on light e.g. UV or
fluorescence spectrophotometry, or vibrational spectroscopy (infrared, near-infrared
or Raman spectroscopies). These techniques have been applied in combination with
genetic programming to nutrient assessment in horticultural products [71, 72].

• DNA Sequencing - This is limited due to extremely low sample size, and very high-
dimensional data, e.g. the average human genome contains 3 billion base pairs and
30,000 genes. The dimensionality, and consequently the computation required to pro-
cess it, rules out genomics data for real-time fish contamination detection. DNA iden-
tification methods were examined in a meta-analysis which revealed an average mis-
labelling rate of 30% in seafood processing [9]. DNA methods are limited, as they only
differentiate between species, and are not useful for determining different body parts
from the same species, or non-organic matter (e.g. engine oil) [14].

• Gas-chromatography mass-spectrometry - Previous work [18] demonstrated that gas-
chromatography mass-spectrometry (GC-MS) can identify fish species with high ac-
curacy. However, GC-MS techniques require significant time and domain expertise to
prepare and analyze samples. This is not applicable for real-time fish contamination
detection.
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2.3 Machine Learning

This subsection will address the existing literature on fish analysis for REIMS data. This
section introduces each paper, then identifies the limitations, and how this proposal intends
to address those. This discussion all fits under the umbrella of ”machine learning”. The
section explores biomass analysis on rapid mass spectrometry data, state-of-the-art deep
learning methods for mass spectrometry analysis, and existing works on marine biomass
analysis using machine learning. This application research area is a very niche highly spe-
cialized field of expertise, this results in next to no existing literature on the exact problem
this proposal seeks to solve. Hence, the novelty of this research area. As it is not possi-
ble to draw on non-existent solutions to this research problem, the literature review draws
an array of related work from tangential existing works on closely related (but not identi-
cal) tasks. Thus this section discusses; 1) existing machine learning techniques for biomass
analysis, 2) state-of-the-art deep-learning methods for mass spectrometry analysis, and 3)
existing works machine learning methods for marine biomass analysis; under the umbrella
term ”machine learning”

In Black et al. [14], REIMS data modelled with PCA-LDA was able to detect species
and catch method. cross-species contamination is a more complex variation of this problem.
In [14], each sample belonged to one species, however, for this problem, each sample can
belong to multiple classes, e.g. a cross-species contaminated sample contains a mixture of
two species. Black et al. [15] performed detection and identification beef adulteration. It can
identify samples that are adulterated with offal, and specify which offal was present. This
is not marine biomass, but instead machine learning analysis of rapid mass spectrometry
applied to animal agriculture. Everything in their work [15] translates to this proposal’s
research, with the exception of the animal agriculture domain. This research focuses on
marine biomass, whereas their research focuses on animal agriculture. The insights from
their analysis are likely universal and can be applied to marine biomass analysis. Rapid
mass spectrometry measurement techniques are a relatively new and niche innovation [12],
so work from different application domains, should be considered.

The detection task of traceability is very similar to signature verification, a pair-wise
comparison that predicts if two instances have the same origin, i.e. they both belong to
the same fish, or the signatures match. Siamese networks [39] were originally developed
for the task of signature verification. Given two signatures, an authentic signature known to
belong to an individual, and the ”query signature” whose veracity is being tested, determine
if the query and reference signature were written by the same person. The model would
predict if a signature is genuine or forged. The detection task in traceability is a simplification,
a pair-wise comparison between two rapid spectrometry samples, to see if they originate
from the individual fish. Although signature verification and sample attribution are from
different domains, the task is identical. Given two inputs, predict if they are the same.
Siamese networks consist of two identification neural networks, sharing the same weights
and architecture. Given a pair of signatures, a reference, and a query, one network takes the
reference, the other network takes the query. The output of both networks is combined using
a distance metric, to produce a similarity score. In the paper [39], the Euclidean distance
was used to compute the distance between the two outputs. The score would indicate the
similarity between the two signatures, the closer the Euclidean distance, the more likely the
query was genuine. The greater the distance, the more likely the query was forged.

Works on few-shot instance recognition [36, 42, 43] show applications in the computer
vision domain. However, mass-spectrometry is not computer vision, as the mass spectro-
graph is not a pixel image. Despite the different domains, deep learning methods work on
MS data [73]. In [73], a CNN achieves 93% accuracy fingerprinting GC-MS data. In 1998,
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Turing award winner LeCun et al. developed LeNet [48, 49, 50, 51], the first convolutional
neural network, it was used for handwritten digit recognition. This CNN architecture has
revolutionized deep learning, with automatic feature extraction via filters. Through a com-
bination of convolutional, pooling and fully connected layers, CNNs are trained to learn
filters that can detect specific features in the dataset, features important for downstream
applications, such as classification. These networks are specialized for datasets with lo-
cal connectivity, such as images [50], audio, or chemistry datasets [73, 32]. In 2012, Alex
Krizhevsky in collaboration with Ilya Sutskever, and another Turing Award winner Geof-
frey Hinton, developed AlexNet [52], which won the 2010 ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) - a classification task with 1000 different classes. AlexNet
consists of eight layers, including five convolutional layers and three fully connected layers,
a standard deep CNN architecture.

Its success inspired the development of deeper CNN architectures, such as VGG-16 and
VGG-19 [53], and GoogleNet [54] In the 2014 ILSVRC, GoogLeNet [54] won, and VGG-16
[53] came second. GoogLeNet [54] was the winner of the ILSVRC 2014 challenge. This deep
CNN model was introduced by Christian Szegedy et al. in 2014. It consists of 22 layers and
uses a novel architecture called the Inception module, which allows for efficient use of com-
puting resources by using multiple filter sizes at each layer. VGG-16 and VGG-19 [53] came
second in the ILSVRC 2014 challenge. These are deep CNN models introduced by Karen Si-
monyan and Andrew Zisserman in 2014. They consist of 16 and 19 layers, respectively, and
have a uniform architecture that only uses 3x3 convolutional filters. VGG-16 and VGG-19
achieved excellent performance on the ImageNet dataset and helped establish the impor-
tance of deeper CNN architectures. VGG-16 and VGG-19 [53] are deep neural networks,
which introduces the problem of vanishing gradients. Deeper neural network architectures
- such as VGG-16, VGG-19 [53], GoogLeNet [54] - introduce the problem of vanishing gra-
dients. Backpropagation computes gradients with reverse mode automatic differentiation,
that computes gradients by chain rule [74]. It requires one forward pass to calculate the er-
rors, and one backward pass to propagate the proportional error of each weight and adjust
those weights accordingly. The chain rule takes the product of nearly n small numbers for
a n-layer network, when computing early layers, resulting in vanishingly small gradients
(error signal) for early those early layer.

ResNet [55] addresses the limitation of vanishing and exploding gradients, by adding
skip connections, which act as gradient superhighways between layers, these allow the gra-
dient to flow freely between non-adjacent layers. This is a family of deep CNN models
introduced by Kaiming He et al. in 2015. ResNet models use a residual learning framework
that allows for training of very deep networks by adding shortcut connections between lay-
ers. The original ResNet model (ResNet-50) consists of 50 layers, and the deeper versions
(ResNet-101, ResNet-152) have up to 152 layers. ResNet achieved state-of-the-art perfor-
mance on several computer vision tasks, including ImageNet classification and COCO ob-
ject detection.

2.4 Evolutionary Computation

Evolutionary computation (EC) borrows concepts from biology. Specifically, population-
based evolutionary search strategies that utilize Darwin’s principle of survival of the fittest
that he proposed in his work [75], originally published in 1859. More recently, evolution-
ary biologist Richard Dawkin’s expanded that idea, in 1976 he proposed memes, cultural
propagation of ideas, in his seminal work The Selfish Gene [76]. In later work from 1996,
Dawkins proposed the evolved imagination, where every organism is a microcosm of its

23



environment.

”Biologists, too, use models to express what they think is going on inside organ-
isms and in ecosystems. But I want to say something altogether more radical.
An animal is a model. Any organism is a model of the world in which it lives.
One way to understand this is to imagine a zoologist presented with the body
of an animal she has never seen before. If allowed to examine and dissect the
body in sufficient detail, a good zoologist should be able to reconstruct almost
everything about the world in which the animal lived. To be more precise, she
would be reconstructing the worlds in which the animal’s ancestors lived.” [77]

This is the bread and butter of EC, where each individual is a candidate solution, an
approximation of a domain-specific task being solved, a model of the world. Dawkins ar-
gued that by examining an individual organism, one could deduce the characteristics of its
environment. Dawkins gives examples to support his argument presented in the epigraph
to this section,

”By reading the animal’s feet and its eyes and other sense organs, the zoologist
should be able to tell how it found its food. By reading its stripes or flashes, its
horns, antlers, or crests, she should be able to tell something about its social and
sex life.” [77]

This draws parallels to computer science, take an Artificial Intelligence Researcher pre-
sented with an accurate and explainable AI model representation. If they have sufficient
domain expertise in the application, and understanding of the model, a good AI researcher
should be able to reconstruct knowledge about the application domain, and potentially pro-
duce novel insights. More recently in deep learning, prominent AI Researchers, Schmidhu-
ber [78] and LeCun [79] have argued strong AI require an explicit world model [80].

However, unlike those deep learning approaches, EC offers AI models with explainable
representations. In biology, the terms genotype and phenotype, refer to the genetic make-up
(or DNA), and the expression of those genes, respectively. Take for example a child, with a
single recessive gene for ginger hair - the genotype, with a brown hair colour - the pheno-
type. EC borrows these concepts, where genotype refers to the representation of the model,
e.g. a tree, vector, neural net, and the phenotype refers to its evaluation that representation,
e.g. a classification label, a regression output, a one-hot encoded vector. In previous work
[18], the EC technique of particle swarm optimisation (PSO) [81] was used for feature selec-
tion in fish species and part identification. In the following chapter on preliminary work, for
that same task EC techniques of single-tree genetic programming (ST-GP) [65] and multi-tree
genetic programming (MT-GP) [82, 83] are used for feature construction and classification.

2.5 Automated Fish Classification on GC-MS Data

The literature review introduces previous research [18], this is important to understand
the preliminary work on the same dataset and future research directions. This work was
undertaken outside the scope of this PhD but lays the groundwork for my preliminary
work. In particular, this work provides a detailed explanation of the gas-chromatography
mass-spectrometry (GC-MS) dataset. It includes an evaluation of classification and fea-
ture selection methods for fish species and part identification. This proposal also looks
to find machine learning techniques for fish species and part identification, but now in-
stead on state-of-the-art mass-spectrometry techniques. Should the reader be interested in
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gas-chromatography mass-spectrometry (GC-MS), species and part identification, this pa-
per would suffice [18], as supplementary reading material, to avoid repetition, the contents
of that paper are ommited.

2.6 Limitations

This proposal seeks to address the limitations of the existing literature that will be resolved
in the thesis. In particular, those limitations are 1) domain knowledge, 2) no state-of-the-
art techniques, 3) no transfer learning/pre-training/synthetic data or Online learning, 4) no
taxonomy (lost in translation).

2.6.1 Domain Knowledge

Expertise in chemistry is needed to choose hyperparameters for every model - time. Signifi-
cant markers are analysed and identified post hoc, relying on domain expertise in chemistry
and human intuition.

Hyperparamters are parameters whose whose value is used to control the learning pro-
cess. Take for example a K-nearest neighbours (KL) [84]. The KL model has hyperparameter
k, this controls the tradeof between bias and variance. k determines the number of nearest
neighbours the model will consult to make a prediction. When k is low, the model has low
bias and high variance, a low-k model is very sensitive to outliers and noise. Conversely,
when k is high, the model has high bias, and low variance, a high-k model is robust to noise
and outliers, but susceptible to underfitting - where it fails to capture complex patterns in
the data.

For more complex models, a typical neural network has hyperparameters that corre-
spond to the architecture and behaviour of that network, e.g. learning rate, number of
hidden layers, neurons per layer, activation function, batch size, epochs, dropout, regu-
larization, optimizer. Ultimately, these hyperparameters are nuisance variables, that must
be decided upon before evaluation, with what usually amounts to combination brute-force
search, human-crafted rules of thumb, and esoteric deep learning domain expertise. Criti-
cism of is often levelled at ”deep learning theory” (or the lack thereof), with comparisons
Arcane rituals or black magic, so much so that [23] coined the term ”grad student descent” -
this describes the non-theory driven manual brute-force exploration of the hyper-parameter
space by postgraduates.

Previous work, [14, 15] in the REIMS literature suffers from this same critique. That cri-
tique is nuisance variables, e.g. hyperparameters, for setting up statistical models chosen by
chemists without theoretical or data-driven justifications. Hyperparameters seem to be cho-
sen rather arbitrarily by humans, for example, the number of principal components, relative
standard deviation (RSD) threshold for outliers, and mass range for mass-spectrometry in
[14, 15]. An automated model that programmatically searches the hyperparameter space for
ideal configurations for these variables. Or models could be chosen that don’t need those
hyperparameters at all! Instead of handcrafted rules of thumb discovered via trial and error,
this research aims to automate exploration of the hyper-parameter space through intelligent
heuristics. This reduces the need for domain expertise in chemistry to design models and
avoids falling into the same pitfalls of previous work.

2.6.2 State-of-the-art Biomass Analysis

Mature statistical techniques are used for dimensionality reduction and classification, not
state-of-the-art machine learning. In the existing literature, principal component analysis
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(PCA) [28] is the only dimensionality reduction technique used. PCA is limited as it does
not take into account feature interactions, interactions with class labels, and feature redun-
dancy/relevance.

Other dimensionality reduction methods should be considered. T-distributed stochastic
neighbour embedding (t-SNE) creates a probability distribution of the similarity between
points in the high-dimensional space. It defines a similar probability distribution over points
in the low dimensional space. Then minimizes the Kullback-Leibler (KL) divergence [35]
between the two distributions. uniform manifold approximation and projection for dimen-
sion Reduction (UMAP) utilizes a theoretical framework based on Riemannian geometry
and algebraic topology. The method makes three assumptions, the data is distributed on a
Riemannian manifold, the Riemannian metric is locally constant (or approximately so), and
the manifold is locally connected. Given these assumptions, UMAP can model the manifold
with a fuzzy topological structure. The data is projected into a lower dimension with the
nearest approximate fuzzy topological structure.

Basic supervised statistical models (e.g. LDA, OPLS-DA) have been used for classifica-
tion. Future work should consider CNNs [32, 73], GANs [30] and Diffusion [85, 86], and
genetic programming for feature construction [82, 83] or feature selection. CNNs [48] are
powerful on datasets that contain local connectivity, such as images, where a collection of
neighbouring pixels may represent an edge. Adjacent features have a very close mass-to-
charge ratio, the x-axis of the data of MS data, is locally connected. Interpretability Research
suggests salience maps as CNN explainers are misleading [87]. They are independent both
of the model and of the data generating process, and visual assessment of the salience map
alone is misleading, as edge detectors produce eerily similar output. While a CNN peak
detector would be effective, a model that can identify peaks, the y-axis of mass spectrome-
try data, salience maps are not suitable explainers for its interpretability. Previous work has
shown CNNs are very effective on mass spectrometry [32] and other chemical datasets [73].
GANs have proven useful for detecting anomalies with outlier thresholding techniques [30].
GANs can be used to apply a latent bottleneck for high-dimensional datasets to make the
data more amenable to downstream applications. Those downstream applications include
the machine learning tasks proposed in this research. GANs can also be used to synthesize
high-quality data, to artificially increase the low sample volume. Diffusion models offer
an alternative approach to GANs. The recent breakthroughs in diffusion [85, 86, 88, 89]
have shown diffusion models can often outperform GANs at the same task. denoising
diffusion probabilistic models (DDPM) [85], the original diffusion paper, behind diffusion-
based image generation models. denoising diffusion implicit models (DDIM) [86], a gen-
eralized DDPM that is faster and deterministic. [88] provides a clear explanation for the
design of diffusion-based generative. [89] proposed ControlNet to add conditional control
to diffusion-based models. Additionally, diffusion models are excellent at denoising, and
could be used to denoise the dataset in pre-processing. The representation of deep learning
methods are inscrutable matrices of floating points.

Alternatively, methods from evolutionary computation offer interpretable models that
can be understood by domain experts. This differentiates them from deep learning methods,
such as GANs or diffusion. GP uses tree-based representation, consisting of a terminal set
and function set, that can be simplified into an arithmetic expression.

2.6.3 Transfer learning

Mass spectrometry produces high dimensionality datasets. However, due to the expensive
equipment, manual labour and domain expertise, there is a low sample volume. Low sam-
ple volume means there are few instances for each class, which leaves a few-shot learning
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task. Transfer learning can apply knowledge learned from one task to another related task.
There is a large body of existing mass-spectrometry data that can help compensate for the
low sample volume of the REIMS dataset. There are many ways to utilize this knowledge
including semi-supervised/unsupervised learning, pre-training, and synthetic datasets.

Semi-supervised / unsupervised learning can utilize partially labelled and unlabelled
data. Unsupervised learning techniques don’t require labelled data. Semi-supvervised
learning uses both labelled and unlabelled data. Zemma et al. [90] incorporated unlabelled
instances to draw more accurate support vectors and improve the classification accuracy for
breast cancer diagnosis with SVM [91]. The key idea, unlabelled data can help a model fit
the underling distribution of the data to generalize on unseen data. Existing MS datasets
for other tasks, can be stripped of their class labels, and used in semi-supervised learning as
unlabelled data. Unlabelled data from related tasks provides a free performance boost.

Chemists are interested in the lipid profile of marine biomass in fish processing. Lipids
are a broad group of organic compounds, that include fats, waxes, sterols and fat-soluable
vitamins. Databases exist for known lipid profiles, e.g. METLIN metabolites database [92]
and LIPID MAPS [93]. These provide reference for annotated mass spectra labels, as demon-
strated in [15]. Existing databases for mass spectra can provide label annotations for impor-
tant features (e.g. significant markers). region-based convolutional neural networks (R-
CNN) [94] extract regions of interest in object detection. Allowing for a black-box method to
provide predictions that can be easily understood, e.g. this area of interest (bounding box)
is like class X. Using a 1-D R-CNN for mass spectrometry would yield regions of interest for
each prediction. Then label annotations for mass spectra in that region, would provide lipid
profiles for significant markers.

Mass-spectrometry (MS) is not a dataset fornautral language processing (NLP), but in-
sights from NLP models such as transformers can help. Pre-training trains a model on a
related task then fine-tunes that model on the desired task. Deep learning methods per-
form better with greater volumes of data, but human annotated label data is expensive.
Unsupverised pre-training [95] rose to popularity for transformers [96, 97]. For large text
corpa, simple and unsupervised tasks such as next sentence prediction (NSP) and masked
language modelling (MLM), gained popularity for learning a semantically meaningful text
embedding. Unsupvervised tasks, such as Next Spectra Prediction and Masked Spectra
Modelling, inspired by NSP and MLM could be used for pre-training on other MS databases
[93, 92]. The pre-training allows for features embedding to capture a larger distribution of
mass spectra data, the rich feature embedding could improve few-shot learning on the de-
sired task.

To address the limitation of low sample volume, synthetic datasets should be considered.
Synthetic dataset can artificially inflate the sample volume. Statistical methods [98, 99, 84]
GANs [33, 30] or Diffusion-based [85, 86, 88, 89] methods can synthesize realistic samples.
Synthesized samples can be filtered for quality by similarity comparison to real world MS
data [93, 92]. Synthetic datasets are often useful for exploring the limitations of a model in
a controlled environment. A recent paper from Uber regarding MRMR for market segmen-
tation [98], uses Synthetic dataset to test effectiveness of feature selection algorithms, in a
simulated customer data problem. In the original paper for χ2 feature selection algorithm
[99], a synthetic dataset is used to simulate various levels of noise in the data, to test the
algorithms robustness to said noise. In the original Relief-F paper [84], synthetic datasets
are used to model relationships of increasing high-order of polynomial complexity. The
synthetic datasets can be used to control the strength of the noise, and the complexity of the
signal. In this research, the datasets have data scarcity, due to time-consuming and laborious
task of producing chemistry datasets. Synthetic datasets can be used to explore robustness
of models, test edge cases that are not present in real-world measurements thus far, and
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artificially inflate the sample sufficiency, to provide more training data.

2.6.4 Online learning

The Cyber-Marine flex-factory, [5], is a real-world application where the algorithms pro-
posed in this research will be deployed. The flex-factory is a real-world application that
provides a continuous stream of data, the marine biomass being processed by the factory,
making it uniquely suited to online learning. There is an important distinction between
online and offline learning [100]. Online learning means that you are doing it as the data
comes in. The model is constantly trained on new data, as it becomes available. Offline
learning means that you have a static dataset. The model is trained once, on the existing
data available at the time, and deployed as is. A smart system would amortize daily test
data coming from the factory, by re-training daily to dynamically adapt. Applications in
identification, contamination and traceability must perform real-time inference on the fac-
tory floor. Deploying online learning in a factory naturally increases the volume of training
data over time. As the datasets grow the quality of the model will likely improve, and yield
models more robust than their offline counterparts. Online learning provides algorithms
that can dynamically adapt to new patterns in the data.

AI models often fail to generalize to unseen data, especially in cases of out-of-distribution
anomalies [30], or conceptual drift [24, 25] where the distribution of the data changes with
time. An example of an out-of-distribution anomaly would be a new type of contamination
that the flex-factory has not seen before. This anomaly would be a contaminant with no
reference data to identify automatically. However, this sample should be flagged as anoma-
lous, isolated/removed from the production line, and sent away for further testing offline
to identify the unknown contaminant. Using this process, if unknown contaminants are
repeatedly found, systems can identify new sources of contamination to the factory work-
ers. Taking this one step further, chemists can provide supervised label annotations for
unknown contaminants and append those newly labelled contaminants to the dataset, for
automatic detection in the future. This outlines human-in-the-loop online learning process
[100], where out-of-distribution contaminants are automatically detected, manually anno-
tated, appended to future training data, and then automatically detected. This human-in-
the-loop online learning is a powerful method to bootstrap algorithms for robustness.

An example of concept drift would distribution of Hoki caused by seasonable variation
in their composition [3]. For a species classification model, the factory could provide super-
vised label annotation of fish species each season for a select few samples. These samples
would serve as a quality control to measure concept drift for the data. Furthermore, these
examples could be appended to the existing datasets, to ensure models are robust to concept
drift caused by seasonal variation, or other unknown factors.

2.6.5 Taxonomy

A clear taxonomy of equivalent terms across domains is needed. The terminology used
to describe their methodology with chemistry/statistics jargon. A clear explanation of the
equivalent terms between chemistry/statistics/machine learning terminology would open
the field to further multi-disciplinary input from ML researchers. The glossary in this pro-
posal is the start of building that bridge between these disciplines. This research will create
a taxonomy to foster multi-disciplinary collaborative work in marine biomass analysis of rapid mass
spectrometry data with machine learning.

Jargon limits the dissemination and communication of interdisciplinary research. Jargon
is the highly-specialized terminology used to describe methods in a particular field, e.g.
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chemistry, biology, statistics, machine learning. For interdisciplinary research to flourish,
each discipline needs to understand the equivalence and difference in their semantics. For
example, what chemists refer to as a variable, an ML researcher would call a feature. The
terms may be used interchangeably, but there are important differences.

AI people use the term feature with domain agnosticism, AI researchers don’t care /
or understand the exact meaning of the feature with respect to the domain. In fact, AI
researchers would rather not have to, good to build models that don’t require domain ex-
pertise at all, or at least very little. An AI researcher would refer to a feature as a column in
the raw mass spectrometry data, e.g. mass-to-charge ratio. However, a chemist would use
the term variable to refer to higher-level domain knowledge For example, if they are inter-
ested in measuring lipids, the lipid would be a variable of interest. The lipid is not explicit
to raw mass spectrometry data, mass-to-charge ratio versus intensity. But its presence is im-
plicit and obvious to those knowledgeable in the application domain, lipids can be explicitly
found by matching to reference spectra label databases [93, 92]. When a chemist says vari-
able it is inherently linked to domain-specific knowledge and means a very specific thing.
An AI researcher may be confused by AI terminology without sufficient domain knowledge,
and vice versa for the chemist. Here is some other domain-specific jargon that could cause
some confusion are quality control (QC) [14, 15], outliers [14, 15], and Significant markers
[14, 15].

It is important for researchers without the necessary background in chemistry to under-
stand this jargon for the specific domain of rapid mass spectrometry. But without gatekeep-
ing, this research must communicate the fundamentals of the necessary chemistry and ML
for a specialist in one domain to understand the work. A clear explanation of the jargon will
encourage further multi-disciplinary work in this field.

2.7 Summary

This section provides a summary of the limitations of the existing work presented in the
literature review, and how this thesis intends to fill those gaps. In particular, the research
will focus on domain knowledge, state-of-the-art, transfer learning, and taxonomy.

• Domain knowledge - The thresholds to determine outliers are determined manually
by domain experts in [14, 15]. Their expertise in chemistry is needed to choose hy-
perparameters for every model - time. Significant markers are analysed and identi-
fied post hoc, relying on domain expertise in chemistry and human intuition. Manual
hyper-parameter tuning (e.g. # principal components, RSD threshold for outliers, mass
range) can be automatically selected, or replaced by models that don’t need them at
all!

• State-of-the-art - Mature statistical techniques are used for dimensionality reduction
and classification, not state-of-the-art machine learning. Basic supervised statistical
models (e.g. LDA, OPLS-DA [14, 15]) was used for classification. Future work should
consider CNNs [32, 73], GANs [30], Diffusion [85, 86], or Evolutionary Computation
[82, 83, 18].

• Transfer learning - There is a large body of existing mass-spectrometry data [93, 92].
Knowledge from these datasets is not incorporated. Potential for transfer learning (in-
corporate previously existing data) to improve performance for few-shot classification
tasks.
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• Online learning - Many AI models completely collapse when presented with new
data, whether that be out-of-distribution anomalies [30], or conceptual drift [24, 25]
where the underlying probability distribution changes over time - for example sea-
sonal variation in composition of Hoki [3]. A flex-factory needs robust models, that
can be updated with new information, and an online learning scenario, where edge
cases are fed back as training data, to make them more robust.

30



Chapter 3

Preliminary work

This research builds on an existing body of research, this includes existing works presented
in the previous literature review section and my own preliminary work. In this chapter, the
focus is the preliminary work. This section discusses and Exploratory data analysis on the
rapid mass spectrometry dataset, and Genetic programming for GC-MS dataset.

3.1 Exploratory Data Analysis

This section reports exploratory data analysis (EDA) on the new rapid evaporative ionisa-
tion mass spectrometry (REIMS) dataset. First, it breaks down the theory. It explains the
label annotations and breaks down relevant terminology, and, introduces species identifica-
tion tasks. Second, the mass spectrum - the artefact produced by the REIMS dataset. Then,
the results of preliminary classification models, and the implications of those results, in con-
cert with domain expertise. Finally, ablation studies verify conjectures made by domain
experts that serve as possible explanations for the results. The remainder of this section
addresses each point with its own subsection.

This section covers the relevant domain expertise on fish, chemistry and machine learn-
ing. First, the label annotations for the REIMS dataset are explained. Second, the species
identification task is introduced, briefly enough to understand the proceeding experiments,
but elaborated on further in the following chapter.

3.1.1 Annotated Labels

Figure 3.1 shows the annotated labels for the rapid evaporative ionisation mass spectrome-
try (REIMS) dataset. This bar chart gives an effective view of the full dataset. This dataset is
separated into five sub-datasets to address five sub-tasks: species, part, cross-species, min-
eral oil, and individual.
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Figure 3.1: Class distribution
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The annotated labels encode information about what each instance is. For example, for
the species identification task, the ”H” and ”M” letters correspond to the species of fish, and
their combination represents a cross-species contaminated sample:

• H→ Hoki - a species of fish.

• M→Mackeral - a different species of fish.

• HM→ Hoki-Mackeral - a contaminated sample contains both species.

Proceeding with the species tag, there is either a number - the individual, tissue - the
body part the sample belongs to, or mineral oil (MO).

Part - The part (or tissue) refers to which tissue of the fish body the sample was taken
from. The fish parts considered in this research include fillet, frames, gonads, head, liver &
skin.

Mineral oil (MO) - The former are self-explanatory, but for the latter - MO, these an-
notations contain a decimal afterwards. Take, for example, ”M MO 0.1”, this represents a
Mackerel species, contaminated with mineral oil, at a contamination rate of 0.1%. The min-
eral oil contamination rates ∈ [0.1%, 1%, 5%, 10%, 25%, 50%]. Samples are contaminated at
different rates because chemists are interested in the sensitivity of the contamination detec-
tion system. As the contamination rate decreases, it is expected the contamination detection
task becomes more difficult.

Quality control (QC) - or check samples, these are all identical, if the technique was
working properly they should be tightly clustered, due to measurement noise they are not.
The QC samples are a 50-50 mixture of the Hoki and Mackerel, they aim to be an average
of the two fish. These are used as a baseline to calibrate and assess the quality of the mea-
surements overall. Should these show high variance in a predictive model, this indicates it
is not well suited to the REIMS dataset.

Relative standard deviation (RSD) threshold - The QC samples serve as additional data
drawn from the same distribution, that can measure the quality of a model. Each predictive
model should perform its sub-task well, and (additionally) show low variance for predicting
this QC samples. Additionally, the QC samples serve an additional purpose, they identify
spurious data points, in particular, when noise exceeds a threshold for identical QC samples.
In mass-spectrometry, chemists often set an arbitrary 30% relative standard deviation (RSD)
threshold for noise. If a particular data point varies in the QC samples by more than 30%
RSD, that measurement is removed from consideration for ALL samples in the dataset.

3.1.2 Species Identification

Species identification is a classification task, to identify the species of the sample, that be-
longs to a single class. In this preliminary work, the species identification task is to classify
an instance as either Hoki or Mackerel, see fish in fig 1.3. Please see subsection 4.3 Species
Identification for more information on this contribution. This subsection presents early re-
sults for the species identification task, addressing the limitations discussed in section 2.5
State-of-the-art ML.

3.1.3 Datasets

A mass spectrum measures mass charge versus intensity, where the charge ratio or m/z ratio
is on the x-axis, where m is the mass - the amount of matter in an object, z is the charge of the
ion. The mass charge ratio m/z is useful, as it allows us to differentiate between molecules of
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the same mass, but different charges, or the same charge but different masses. The intensity
on the y-axis refers to the relative abundance of ions in a mass spectrum, the intensity peak
in a mass spectrum represents the number of ions with a particular mass-to-charge ratio that
are detected by the mass spectrometer.

Figure 3.2 gives the mass spectrum, the artifact of the mass-spectrometry, for the first
instance of the REIMS datasets. This mass spectrum was taken from a Hoki Fillet, that is the
fish species of Hoki, and the body part Fillet.

Figure 3.2: Mass spectrum for a Hoki fillet

Figure 3.3 gives the mass spectrums for the entire REIMS dataset. This gives an intuition
for the range and variability across these measurements. The colours differentiate between
the different annotated labels which are given in figure 3.1.
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Figure 3.3: Mass spectrums for entire REIMS dataset

3.1.4 Results

Table 3.1 gives the results for preliminary experiments, exploring the performance of differ-
ent dimensionality reduction techniques and classification algorithms on the REIMS dataset.
In these preliminary experiments, the classification task is species identification. The di-
mensionality reduction techniques create n = 20 features. The table gives the mean and
standard deviation classification accuracy on the test set over 10-fold cross-validation. The
best-performing reduction method and classification, and respective classification accuracy,
are in bold.

Method SVC [91] KNN [101] DT [102] RF [103] XGBoost [104] LDA [105]
PCA [28] 0.88 ± 0.17 0.85 ± 0.13 0.83 ± 0.15 0.87 ± 0.13 0.88 ± 0.14 0.92 ± 0.13
t-SNE [106] 0.70 ± 0.11 0.68 ± 0.11 0.55 ± 0.09 0.68 ± 0.07 0.69 ± 0.10 0.65 ± 0.11
UMAP [107] 0.84 ± 0.13 0.86 ± 0.14 0.81 ± 0.11 0.87 ± 0.12 0.88 ± 0.13 0.87 ± 0.14

Table 3.1: Dimensionality reduction / classification Methods for Species Identification

The table shows PCA-LDA [28, 105] (in bold) has a mean classification accuracy of 92%
with a standard deviation of 10.3%. For reference, principal component analysis - linear dis-
criminant analysis (PCA-LDA) is the primary technique used in existing literature, [14, 15]
for REIMS datasets in the classification of raw biomass. The staple technique used in existing
literature outperforms more recent feature reduction methods and a variety of classification
methods. These initial experiments show, that despite neither PCA nor LDA being state-
of-the-art when used in combination, on REIMS dataset, they perform incredibly well. The
strengths of each of these techniques should be investigated, to find similar techniques that
can provide competitive results.

The EDA provides insight into suitable models for the dataset. PCA [28] Project data
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along the principal components, the axis of maximum variance in descending order. The
first principal component is the axis of maximum variance, the second principal component
is orthogonal to the first and has the second largest variance, and so on. The chemists at
Plant and Food Research New Zealand Ltd. (PFR) said the first two principal components
for REIMS seem to only capture noise. It is the third, fourth and later principal compo-
nents that capture meaningful signals in the data. Perhaps, the reason PCA outperforms
t-SNE and UMAP, is that PCA is able to implicitly denoise the dataset, by extracting and
isolating the principal components, which can likely be attributed entirely to noise in the
measurement. An ML model would simply ignore (or provide low weightings) these prin-
cipal components, which are without signal and just noise. However, t-SNE and UMAP, due
to their methodology, preserve the noise and incorporate it into the reduced dimensions of
their projections. Unlike PCA, these dimensionality reduction techniques are unable to de-
noise the dataset. The poor performance of UMAP could be attributed to three assumptions
of algorithm not holding for this dataset. The data may not be uniformly distributed on a
Riemannian manifold, or the Riemannian metric may not be locally constant, or the mani-
fold is not locally connected, or all of the above [107]. Denoising the dataset had a significant
effect on the classification performance. This suggests it may be an important step in pre-
processing, where PCA can be used in combination with classification models. Or, that a
model with implicit denoising, such as a denoising auto-encoder [20] with a fully connected
network for each sub-task, may yield noteworthy results. Furthermore, GANs have shown
promise in anomaly detection [30], which is a closely related field to contamination detection
and identification presented here.

3.1.5 Ablation Studies

The ablation study can verify the PFR’s conjecture made above, both visually and empir-
ically, with an evaluation of the species identification task. To verify visually the ablation
study gives a plot for class distribution for features 1 & 2, versus features 3 & 4, for each di-
mensionality reduction technique, the plot whose clusters are more visually distinct has less
noise and more signal. To verify empirically, the ablation study can measure the prediction
accuracy of a classification model trained solely on 1 & 2, versus features 3 & 4, the better
performance indicates less noise and more signal in the extracted features.
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Table 3.2: Visual intuition for dimensionality reduction techniques and their respective fea-
ture subsets

PCA [28]
Features 1 & 2 Features 3 & 4

t-SNE [106]
Features 1 & 2 Features 3 & 4

UMAP [107]
Features 1 & 2 Features 3 & 4
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Table 3.2 gives the class distribution for features 1 & 2, versus features 3 & 4, for each
dimensionality reduction method, PCA [28], t-SNE [106] and UMAP [107]. This gives intu-
itive and visual proof of the ability of each technique to tolerate noise in the dataset. The
results agree with the conjecture proposed by PFR, which suggests that the first two princi-
pal components are mostly noise, and principal components 3 & 4, offer more signal than
the noise of principal components 1 & 2, for the species identification task. This table shows
that other dimensionality reduction techniques, t-SNE [106] and UMAP [107], struggle to
extract and isolate this noise, as the class distribution remains muddles for both features 1
& 2, and features 3 & 4.

Table 3.3: Empirical evaluation of dimensionality reduction techniques and their respective
feature subsets

Method Features 1 & 2 Features 3 & 4
PCA [28] 55.47± 6.68 86.40 ± 16.25
t-SNE [106] 57.24 ± 2.03 55.80 ± 3.69
UMAP [107] 85.27 ± 15.17 81.23 ± 17.15

Table 3.3 gives the cross-validation score for each dimensionality reduction method, PCA
[28], t-SNE [106] and UMAP [107], trained exclusively on features 1 & 2, versus features 3
& 4. The table gives the mean and standard deviation classification accuracy, with Support
Vector Machine (SVM), on the test set over 10-fold cross-validation. The best-performing
dimensionality reduction technique and feature subset, are given in bold. Results show
with PCA [28] that features 1 & 2 have the lowest predictive accuracy, suggesting these are
mostly noise. Conversely, features 3 & 4 have the highest predictive accuracy, exceeding that
of all feature subsets for both t-SNE [106] and UMAP [107], suggesting that these provide
an excellent signal for the species identification task.

The results demonstrate visually through intuition, and empirically through classifica-
tion performance, that the conjecture that principal components 1 & 2 are mostly noise, and
principal components 3 & 4 are provide signal, for REIMS data on the task of species iden-
tification. Furthermore, PCA [28] provides a pre-processing technique step for denoising
REIMS data, it is able to isolate and extract noise, which leads to significant improvements
in classification performance.

3.2 Genetic Programming for GC-MS Data

This section describes preliminary work using genetic programming (GP) on gas-chromatography
mass-spectrometry (GC-MS). The preliminary work on evolutionary computation provides
insight into useful techniques for fish analysis on chemical datasets. These techniques could
be applied to the REIMS dataset. Specifically, this section covers the theory, the datasets, the
experimental setup, and the results. In the genetic programming (GP) subsection of the pre-
liminary work, experiments benchmark three GP methods, to my previous work, [18], that
was addressed in the last subsection. In particular, the three GP methods proposed in this
work are 1). single-tree genetic programming (ST-GP), 2). multi-tree genetic programming
(MT-GP), and 3). multiple class-independent feature construction method (MCIFC).

ST-GP - The first method, ST-GP, is a standard genetic programming (GP) [65]. MT-GP
extends single-tree GP, now it returns multiple trees - a list of single-tree GPs [82, 83]. MT-GP
can be thought of as multiple single-tree GPs working together to make a multi-class classifi-
cation prediction. The trees combine to make the class prediction. MT-GP is more expressive
than ST-GP, as each multiple tree constructs multiple features, giving a richer feature set to
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make predictions form. Whereas ST-GP needs to learn to predict multiple classes with only
one output, a difficult task, that can be imperfectly solved with classification maps [108] for
multi-class classification.

MT-GP - Algorithm 1 shows the pseudo-code of the multi-tree genetic programming
(MT-GP). The multi-tree representation has m trees. The limitation of multi-tree genetic pro-
gramming (MT-GP), is that the class information is entangled, i.e. randomly split between
all the trees, without any particular preference or logic.

MCIFC - Disentangling the class prediction allows for the simultaneous training of mul-
tiple trees, each specialized in predicting only one class - this is multiple class-independent
feature construction method (MCIFC). This method has a separation of concerns, where
each tree has a dedicated class to predict, and nothing else. MCIFC, shown in [82, 83], is
an extension of MT-GP that ensures each tree corresponds to a class, and its value, high or
low, predicts the likelihood of that class. MCIFC only has to worry about learning to predict
its respective class. Note: the pseudocode for simpler algorithms for ST-GP and MT-GP are
trivial, compared to MCIFC, and whose derivation are left as an exercise for the reader.

Algorithm 1 GP-based multiple feature construction
Input : train set, m;
Output : Best set of m trees;
Initilize a population of GP invidiuals. Each individual is an array of m trees;
best inds← the best e individuals;
while Maimum generation is not reached do

for i = 1 to Population Size do
trans f train← Calculate constructed features of individual i on train set;
f itness← Apply fitness function on trans f train;
Update best inds the best e individuals from elitism and offspring combined;

end for
Select parent individuals using tournament selection for breeding;
Create new individuals from selected parents using crossover or mutation;
Place new individuals into population for next generation;

end while
Return best individual in best inds;

3.2.1 Representation

ST-GP - has a genotype of an arithmetic syntax tree [65]. To evaluate the output of the
phenotype of single-tree representation, one feeds feature values as arguments into the leaf
nodes of that arithmetic syntax tree, and calculates the output of the resulting arithmetic
expression. Reverse polish notation can be a useful condensed shorthand for representing
the evaluation of single-tree GP.

MT-GP - The genotype of multi-tree genetic programming (MT-GP) extends ST-GP to
include as many trees as there are classes in the dataset. The evaluation of individual trees is
identical to the above, however, a winner-takes-all approach is used to evaluate phenotype,
which is the class whose tree corresponds to the largest input, corresponding to the MT-GP’s
prediction.

MCIFC - [83] is MT-GP that constructs a smaller number of high-level features, propor-
tional to the number of classes, from the original features. This method is based on the intu-
ition that problems with more classes are likely to be more complex, and thus require more
features to capture said complexity. The number of constructed features m, determined by
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m = r× c, where r is the construction ratio (set to 2), and c is the number of classes. MCIFC
constructs 8 features for the 4-class fish species problem and 12 features for the 6-class fish
species problem.

3.2.2 Crossover and Mutation

Crossover - In standard single-tree genetic programming (ST-GP) using the DEAP library
for multi-class classification, the crossover operation is a fundamental genetic operator that
combines two parent trees to create one or more offspring trees. Here’s a brief description
of how the crossover operation works:

1. Selection of Parent Trees: Two parent trees are selected from the population using a
selection method like tournament selection or roulette wheel selection. These parent
trees represent potential solutions to the problem.

2. Subtree Exchange: The crossover operation identifies one or more subtrees within each
parent tree. These subtrees are typically chosen randomly, but there are various strate-
gies for subtree selection, such as choosing subtrees of similar size to maintain balance
in the offspring.

3. Exchange Subtrees: The selected subtrees from the two parent trees are swapped or
exchanged to create two offspring trees. This swapping operation results in two new
trees with genetic information from both parents.

4. Offspring Creation: The two offspring trees replace the parent trees in the population.
These offspring trees inherit genetic characteristics from both parents, potentially lead-
ing to improved solutions over time through the process of evolution.

Mutation In single-tree Genetic Programming (GP), the mutation operator is a funda-
mental genetic operator that introduces small random changes to an individual tree within
the population. This operator helps in exploring the search space by creating variations of
existing solutions. Here’s a description of the mutation operator in single-tree GP:

1. Selection of Parent Tree: First, one parent tree is randomly selected from the popula-
tion. This tree represents a potential solution to the problem.

2. Node Selection: Within the selected parent tree, a random node (or subtree) is chosen.
The node can be any part of the tree, including internal nodes (function nodes) or
terminal nodes (leaf nodes).

3. Mutation: The selected node is replaced with a new randomly generated node. The
replacement node can be of the same type (e.g., replacing an addition operation with
another addition operation) or a different type (e.g., replacing an addition operation
with a multiplication operation). The replacement node can also be a randomly se-
lected terminal node if the selected node was an internal node or vice versa.

4. Offspring Creation: The resulting tree with the mutated node replaces the original
parent tree in the population. This offspring tree is now a slightly modified version of
the parent tree, introducing genetic diversity into the population.

ST-GP -The crossover operation allows the genetic algorithm to explore the search space
by combining the information from two different solutions. This process helps the algo-
rithm discover new, potentially better solutions for the multi-class classification problem.
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The mutation operator in single-tree GP plays a crucial role in maintaining genetic diver-
sity and exploring the solution space. By introducing random changes to individual trees,
it allows the algorithm to escape local optima and potentially discover better solutions over
time through the process of evolution.

MT-GP - Reproduction or the cross-over operator for multi-tree genetic programming (MT-
GP), where trees are represented as a list, is where crossover happens to a subtree that is
selected at random. Crossover operations are limited to parents from the same tree. Muta-
tion happens to a tree selected at random when an individual is selected for crossover. The
same crossover and mutation operators are used for MCIFC.

MCIFC - This method limits both the crossover and mutation operators to only one of the
constructed features described in Algorithm 2. This approach favours exploitation over
exploration, making small random changes to constructed features with monotonically in-
creasing fitness due to elitism. Only updating one tree at a time for multi-tree methods en-
sures that an improvement to fitness for one tree by a crossover or mutation is not cancelled
out by a decrease in fitness for another tree. Only changing one tree at a time guarantees
monotonic improvement of fitness - that is the fitness can either remain the same or improve,
it cannot get worse.

Algorithm 2 MCIFC crossover and mutation.
prob← randomly generated probability;
doMutation← (prob < mutationRate);
if doMutation then

p← Randomly select an individual using tournament selection;
f ← Randomly select a feature/tree from m trees of individual p;
s← Randomly select a subtree in f ;
Replace s with newly generated subtree;
Return one new individual;

else
p1, p2← Randomly select 2 individuals using tournament selection;
f 1, f 2← Randomly select a features/trees from m trees of p1 and p2, respectively;
Swap s1 and s2;
Return two new individuals;

end if

3.2.3 Fitness

Balanced classification accuracy is given by giving a stratified accuracy score, that measures
the accuracy of the GP tree, scaled to the proportions of each class frequency, to prevent bias
towards to majority class in the base of an imbalanced dataset. Balanced accuracy is relevant
for the fish species dataset, with the majority class 44% of samples belonging to fish species
blue cod. The balanced accuracy is given by

Balanced Accuracy =
1
c

c

∑
i=1

TPi

TPi + FNi
(3.1)

where TPi is the number of true positives for class i, and FNi is the number of false
negatives for class i, c is the number of classes.
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ST-GP - Single-tree genetic programming (ST-GP) uses classification maps for multi-
class classification, as in [108]. This approach uses a number line where the user arbitrarily
draws floating points that correspond to class boundaries, where there is an interval on that
number line, for each respective class in the classification problem. If the phenotype, e.g
the evaluation of GP tree produces an output within the interval for a given class, that class
becomes the prediction given for the model.

MT-GP - Multi-tree genetic programming (MT-GP) has a phenotype of winner-takes-
all. There is one tree for each class, and the class whose tree gives the largest output is the
predicted class for multi-tree GP. The winner-takes-all is implemented as an argmax function
of the evaluated output of all trees concatenated together.

MCIFC - MCIFC uses the same balanced classification accuracy as MT-GP, but also con-
tains a regularization term that maximizes the distance between dissimilar classes, and min-
imizes the distance between similar classes.

3.2.4 Datasets

The dataset is the gas-chromatography dataset previously mentioned in previous work [18]
that was discussed in the literature review. If needed please consult this paper for a compre-
hensive description of this dataset. The gas chromatogram is the artefact of the Gas Chro-
matography method. The x-axis represents the time required to separate the individual fatty
acids (or a packet), and the y-axis represents peak intensity (or the packet intensity), which
is proportional to the concentration of each fatty acid. Chemists integrate the area under
each peak to measure how much of each fatty acid is present, and use this information to
understand the best use of the oil. This process can be slow, labour-intensive and expensive.

Figure 3.4 gives a gas chromatogram - the artefact of the gas chromatography - for tissue
taken from the skin of a Snapper. Please see [18], for an example gas chromatogram and a
more thorough description of the measurement technique.

Figure 3.4: Gas chromatogram of fatty acid methyl esters from snapper skin.
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Table 3.5: Paramter settings.
Function Set +,−, ∗
Teriminal Set x1, x2, ..., xn, r ∈ [−1, 1]
Maximum Tree Depth 8
Population size 4800 (= #features)
Initial Population Ramped Half and Half
Generations 300
Crossover 0.8
Mutation 0.2
Elitism 0.1
Selection Tournament
Tournament Size 3
Construction ratio 2

Table 3.4: Gas chromatography datasets.
Dataset Features Instances Classes Class Distribution
Fish Parts 4800 153 4 44% 17% 20% 19%
Body Parts 4800 153 6 15% 22% 14% 22% 14% 13%

Table 3.4 shows the datasets used in the experiments and their respective characteristics.
Due to the high dimensionality of gas chromatography data, this paper employs a GP-based
FC approach. The dataset is suited towards dimensionality reduction, as previous work [18]
demonstrated FS can improve classification accuracy. The small number of instances is due
to the expensive and time-consuming nature of performing Gas Chromatography on fish
tissue. The data is pre-processed to fix the instrumental drift by imputing missing times-
tamps with zero filling. Features are normalized in the range [0, 1] based on the training
set.

3.2.5 Experimental Setup

Table 3.5 describes the parameter settings of all GP-based methods used in the experiments.
The function set has standard arithmetic operators +,−,×, a protected division operator
that prevents division by zero returning 0 instead, and the unary neg operator reverses the
sign. The feature set, and randomly generated constant r ∈ [−1, 1], are used in the terminal
set. A population of 100 individuals is used for all experiments, with 300 generations. The
construction ratio r used to determine the number of features constructed is experimentally
chosen as 2.

3.2.6 Results

Table 3.6 compares the classification results from [18], to the ST-GP, MT-GP, and MCIFC
methods proposed in this preliminary work. The experiments use the same evaluation set-
tings proposed in the original paper. The balanced classification average over stratified
cross-validation (k = 10) averaged over 30 independent runs. Balanced accuracy is used to
counteract the class imbalance in the fish species dataset. The GC-MS dataset is expensive to
time-consuming, leading to a low sample size, which motivates the use of cross-validation.
The table gives an average over 30 runs to ensure results are statistically significant due to
the stochastic nature of population-based genetic programming.
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Table 3.6: Results
Dataset Method Train Test

Species

KNN [101]
RF [103]
DT [109]
NB [102]
SVM [91]
MT- GP
MCIFC

83.57
100.0
100.0
79.54
100.0
97.52
100.0

74.88
85.65
76.98
75.27
98.33
72.61
99.64

Parts

KNN
RF
DT
NB
SVM
MT- GP
MCIFC

68.95
100.00
100.00
65.54
100.00
84.30
97.81

43.61
72.60
60.14
48.61
79.86
86.80
84.30

Evolutionary computation methods, MT-GP and MCIFC, both offer competitive perfor-
mance to the traditional machine learning methods, KNN, RF, DT, NB, SVM, from [18], on
chemical datasets for marine biomass. MCIFC performs best on the test set for fish species
identification. MCIFC overfits to the training set, and fails to generalize well on the test
set, for fish part identification. MT-GP performs best for the test set for fish part identifica-
tion. MT-GP overfits to the training set, and fails to generalize well on the test set, for fish
species identification. These GP methods are compared to FS methods from [18]. Firstly, for
fish species identification, MCIFC exceeds performance of all FS methods, [99, 81, 110, 111],
with SVM [81] Secondly, for fish part identification, MCIFC is better than χ2 [99] and the full
dataset. MCIFC offers same performance as PSO [81] MCIFC is worse than ReliefF [110] and
MRMR [111]. MT-GP offers competitive performance to MRMR [111], 86.80 % compared to
86.94 %, respectively.

3.2.7 Summary

This preliminary work explored evolutionary computation methods for fish species & fish
body parts, binary & multi-class classification, respectively, on a gas chromatography dataset.
Here is a summary of the key takeaways from this work:

• Fish species - MCIFC gives the best accuracy for training and testing on the fish species
binary classification.

• Fish parts - The fish parts dataset, which is known to be harder from [18]. MT-GP -
gives the best test accuracy for the harder fish parts multi-class classification.

• MCIFC - offers better training accuracy for the fish parts dataset but performs worse
than MT-GP for the test dataset. MCIFC - unable to generalize as well as MT-GP on
unseen data, likely overfitting the training data, which explains the stark differences
in accuracy between train and test.

• EC - However, evolutionary computation methods MT-GP & MCIFC, both offer com-
petitive results, that outperform traditional machine learning methods that were eval-
uated in [18]. Evolutionary computation methods are a strong competitor and alterna-
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tive to traditional machine learning methods for chemical analysis of marine biomass,
for downstream classification tasks in fish species and fish body parts.
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Chapter 4

Contributions and Project Plan

The remainder of this proposal focuses on execution, the goals of the research, and how to
ensure the thesis meets those goals. This chapter presents the contributions this thesis will
address and gives a plan for how they will be delivered, and what is needed in order to
achieve them. Specifically, this chapter covers proposed contributions, milestones, thesis
outline and resources.

4.1 Proposed Contributions

The work will contribute novel methods for rapid determination of bulk composition and
quality of marine biomass in Mass Spectrometry. The proposed contributions are as follows.

1. Fish identification - a variable-width input multi-scale classification task - Resolution-
invariant (e.g. variable-width input) via data augmentation, synthetic datasets, and
pretraining strategies like Next Spectra Prediction and Masked Spectra Modeling. The
model learns multi-scale resolution-invariant representations that can handle low-
resolution rapid mass spectrometry and high-resolution direct-infusion spectrometry.

This model determines the viability of rapid mass spectrometry for use in fish
processing, compared and contrasted with the slower direct-infusion mass spec-
trometry, whose rapid nature will dramatically increase factory throughput.

(a) Multi-scale resolution-invariant fish species identification with binary classifica-
tion.

(b) Multi-scale resolution-invariant fish body part identification with multi-class clas-
sification.

2. Quantitative contaminant analysis - an extension of existing outlier thresholding tech-
niques that not only detect contamination but also provide quantitative and qualita-
tive profiles of contaminants found. The proposed model will have mechanistic in-
terpretability for trusted use by domain experts in fish processing. Implemented with
four methods:

(a) Contamination detection of cross-species or mineral oil contaminants with binary
classification.

(b) Contamination analysis of cross-species or mineral oil contaminants with multi-
label classification, which gives predicted contaminants present in the sample.
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(c) Contamination quantification, which gives relative percentages of each contami-
nant, with multi-label multi-output regression, where one or more contaminants
are identified, and their relative percentage of the composition of the sample is
estimated via regression.

(d) Black swans, the unknown unknowns [112, 113]. An extension of outlier thresh-
olding [14, 15] to detect out-of-distribution classes, classes not in the training data,
as unknown contaminants, that can be identified, isolated, and studied offline,
manually given label annotations by chemists, and added to the future training
set for continuous integration and deployment - an online learning paradigm for
robust models that adapt to concept drift.

3. Traceability - a one/few-shot learning problem that employs novel pre-training strate-
gies adapted from natural language processing, to decode and interpret a substantive
repository of over 14,000 mass spectrometry datasets. Learning a universal feature
embedding that is applied to the downstream tasks of:

(a) Detection - detects if two samples come from the same individual fish via simi-
larity learning for pair-wise comparison.

(b) Instance recognition - assigns unique identifiers for each individual fish, to un-
seen instances that can be matched to existing fish that have been uniquely la-
belled via instance recognition. A novel few-shot similarity-based contrastive
learning approach, for instance recognition.

4.2 Milestones

This research project has several key milestones it aims to achieve in the course of the work.
In particular, the milestones for this proposal are:

1. Proposal

2. Conferences (x2)

3. Journals (x4)

4. Literature Review

5. exploratory data analysis

6. Preprocessing

7. Identification

8. Contamination - Detection

9. Contamination - Analysis

10. Contamination - Quantification

11. Traceability - Detection

12. Traceability - Sample attribution

13. Feature Importance

14. Visualization
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15. Thesis

The work of this thesis will be submitted to relevant peer-reviewed journals and con-
ferences. The aim is for the work to be accepted into (at least) two academic conferences,
and four journals. For a 3 - 3.5 year PhD, these publication milestones are ambitious, but
they will increase credibility, quality and public awareness of the work completed during
the project. Note: the suspension milestone marks an extraordinary circumstance that was
beyond the author’s control.

48



2022
2023

2024
2025

03
04

05
06

07
08

09
10

11
12

01
02

03
04

05
06

07
08

09
10

11
12

01
02

03
04

05
06

07
08

09
10

11
12

01
02

03

Proposal

Suspension

C
onferences

Journals

Literature
R

eview

exploratory
data

analysis

Preprocessing

Identification

qualitative
contam

inantanalysis

Traceability

Feature
Im

portance

V
isualization

Thesis

49



4.3 Thesis outline

The goal of this research is to develop a rapid and accurate method for determining the bulk
composition and quality of marine biomass using mass-spectrometry. Specifically, the thesis
outline has the following structure:

Abstract

Glossary

Chapter 1 - Introduction

Chapter 2 - Literature Survey

Chapter 3 - Datasets and Processing

Chapter 4 - Fish Species and Part Identification

Chapter 5 - Fish Quantitative Contaminant Analysis

Chapter 6 - Fish Traceability analysis

Chapter 7 - A Case Study, Demonstrations and Discussions

Chapter 8 - Conclusions

Bibliography

Index

The thesis outline includes a glossary to bridge the multi-disciplinary gap in knowledge.
Most readers will likely have expertise in one discipline. Removing the barrier of jargon
between disciplines will make it easier for multi-disciplinary future work, making the field
more accessible to machine learning researchers.

4.4 Resources

4.4.1 Human resources

In addition to these resources, AI researchers have gained valuable experience through pre-
vious field trips to NZ Plant and Food Research, where AI researchers saw GC-MS first-hand
for my previous publication [18]. This trip gave insights into steps in the ocean-to-plate
supply chain, as their research laboratory-processed whole fish into fish oil tissue samples
suitable for mass-spectrometry techniques. With another trip to the Nelson-based Plant and
Food Research, AI researchers could see DIMS in person. Lastly, it would be invaluable to
plan a trip to the Wellington-based Callaghan Innovation, to see the REIMS in person.

4.4.2 Financial

Publications to conferences are to be expected, following on from [18], further publications
at future AJCAI and the international IJCAI, and other conferences for evolutionary com-
putation, e.g. CEC, GECCO, EvoStar, are to be expected. Therefore a travel grant would be
expected to support these endeavours.
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Glossary

adulteration Food adulteration is the act of intentionally debasing the quality of food of-
fered for sale either by the admixture or substitution of inferior substances or by the
removal of some valuable ingredient [16] . 2, 5, 7, 9, 18, 21, 22

AI artificial intelligence. 4, 6–8, 11, 12, 14, 15, 20, 24, 29, 30

analysis Analysis is concerned with identifying which contaminants are present. Not to be
confused with detection, which simply tells us if a sample is contaminated. Analysis
takes this one step further and gives predictions for which contaminants are present in
the fish tissue. Take for example, cross-species contamination, contaminant analysis
predicts which species are present in a contaminated sample, e.g. detection: contam-
inated, analysis: Hoki and Mackerel both present . 2–6, 11, 15, 16, 18, 19, 22, 38, 47,
50

anomalies Anomalies refer to out-of-distribution data that the model could not possibly
expect. It is unrealistic for the model to correctly classify these instances, but a model
can be built to detect such anomolies, as seen in [30]. In fish processing, an example of
an anomaly would be a new species of fish, or marine biomass, that is not a labelled
class or present in the training or validation data . 26, 28, 30

charge characteristic of a unit of matter that expresses the extent to which it has more or
fewer electrons than protons. Electric charge is the physical property of matter that
causes it to experience a force when placed in an electromagnetic field. In the context
of mass spectrometry, particularly REIMS which uses a Time-of-Flight (TOF), this uses
an electric field to accelerate generated ions through the same electrical potential and
then measures the time each ion takes to reach the detector. Depending on the charge
of each particle, that time will vary, because the electric field applies different amounts
of force to particles with different charges . 33

CNN convolutional neural networks. 12, 13, 22, 23, 26, 29

concept drift See conceptual drift . 7, 21, 28

conceptual drift A term from data stream mining, [69, 24], that refers to a change in the
underlying distribution of the data. In fish processing, conceptual drift occurs in sea-
sonal variation where the composition of fish changes between different seasons . 21,
28, 30

contamination Food contamination is generally defined as foods that are spoiled or tainted
because they either contain microorganisms, such as bacteria or parasites, or toxic sub-
stances that make them unfit for consumption. A food contaminant can be biological,
chemical or physical, with the former being more common. These contaminants have
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several routes throughout the supply chain (farm to fork) to enter and make a food
product unfit for consumption [27] . 2, 4–8, 10, 13, 15–17, 21, 22, 28, 33, 36

cross-species Cross-species refers to a form of contamination, where two species are mixed
together, e.g. a sample with both Hoki and Mackerel. In the mass spectrometry
datasets, these species are mixed thoroughly in a blender to give a homogeneous sam-
ple with a maximum blend of the two species . 5–9, 15–18, 21, 22, 33

cross-validation For k-fold cross-validation, the method divides the data into k folds such
that the proportions of the classes in each fold are representative of the proportions in
the whole dataset. Each fold plays the testing role, while the remaining (k-1) folds are
combined to form a training set . 35, 38, 43

Cyber-Marine Cyber Physical Seafood Systems (Cyber-Marine) is a new multi-million dol-
lar research programme aimed at achieving 100% utilisation and maximised value for
all harvested wild and aquacultured seafood. Making use of all raw material will
allow the industry to achieve growth targets without increasing catch volume from
wild-capture fisheries as well as maximise value from increasing aquaculture. Once
established for the seafood industry, the technology could be adapted for any bio-
industrial process [5] . 2

DDIM denoising diffusion implicit models. 26

DDPM denoising diffusion probabilistic models. 26

detection Detection finds if something is hidden in a sample. It does not have to specify
what was hidden, only that sample had something hiding. E.g., it can detect some
form of adulteration, cross-species contamination, or mineral oil in a fish sample . 7,
10, 15, 21, 36, 47

DIMS direct infusion mass spectrometry. 3, 13, 18, 21, 50

DL deep learning. 5

domain knowledge Knowledge related to the application domain. For example, biochem-
istry and fish processing . 29

EC evolutionary computation. 17, 23, 24

EDA exploratory data analysis. 31, 35, 47, 49

FC feature construction. 43

FS feature selection. 43, 44

GAN generative adversarial networks. 8–10, 16, 18, 26, 27, 29, 36

gas chromatogram Gas Chromatography for fatty acid analysis in [18]. The gas chromatogram
is the artefact of the Gas Chromatography method. The x-axis represents the time re-
quired to separate the individual fatty acids (or a packet), and the y-axis represents
peak intensity (or the packet intensity), which is proportional to the concentration of
each fatty acid. Chemists integrate the area under each peak to measure how much of
each fatty acid is present and use this information to understand the best use of the
oil. This process can be slow, labour-intensive and expensive . 42

52



GC-MS gas-chromatography mass-spectrometry. 21, 22, 24, 25, 31, 38, 43, 50

genotype In biology, the genetic material (i.e. DNA), e.g. the recessive trait for ginger hair
colour. In Evolutionary Computation, the representation or encoding for an individual
candidate solution . 24

GP genetic programming. 17, 21, 26, 38, 39, 43, 44

heterogeneous The antonym of homogeneous. Consisting of many different elements. In
the context of fish processing, New Zealand’s marine biomass, the incoming catch
from trawling vessels, is heterogeneous, as it consists of many different species - a
wide range of marine biomass . 5

homogeneous This term is used heavily in chemistry. In the context of chemistry homoge-
neous means the same, or having a similar structure. In fish processing, the fish tissue
samples are taken from a homogeneous blend of marine biomass. Also, in the Hoki
season, the input to the flex-factory is predominantly one species, this may also be
referred to as homogeneous. The marine biomass of Canada or the United States, the
incoming catch from trawling vessels, is homogeneous, as it consists of mostly one (or
few) species - a narrow range of marine biomass . 5, 6, 14

hyperparameter Hyperparameter (machine learning) In machine learning, a hyperparame-
ter is a parameter whose value is used to control the learning process. These are often
manually set by the user, and are comparable to nuisance parameters from statistics,
as they require tuning for models to perform well . 25, 29

identification Different to detection, identification involves detecting the presence of phe-
nomena in a sample and then specifying what the phenomena were. E.g., an identi-
fication system can find cross-species contamination and identify both species in the
contamination . 4, 10, 14, 21, 22, 24, 31, 33, 35, 36, 38, 47, 49

instance identification In computer vision, this is referred to as instance identification [38],
not to be confused with instance segmentation [37]. Instance identification is the task
of identifying unique instances in a photograph. Take for example a photograph with 5
sheep. Instance identification would identify each of the individual sheep, as a unique
individual. In the context of fish processing, instance identification correctly assigns
the origin of a sample, which unique individual fish it originated from. In chemistry,
we refer to this as sample attribution, and for this proposal, treat the terms as inter-
changeable . 11, 53

instance recognition The machine learning term for recognizing individuals that may be-
long to the same class is ”instance recognition” [36], or ”individual recognition”. For
fish processing, instance recognition would involve recognizing each individual fish
in the samples and assigning a unique identifier or label to each of them. This would
allow the model to differentiate between individual fish even if they belong to the
same species. Instance recognition is a type of object recognition task that goes be-
yond simply recognizing object classes and aims to identify each individual instance
of an object class. It is commonly used in various fields such as wildlife monitoring,
security surveillance, and biometrics . 10–12, 18, 22

intensity The intensity on the y-axis refers to the relative abundance of ions in a mass spec-
trum, the intensity peak in a mass spectrum represents the number of ions with a
particular mass-to-charge ratio that are detected by the mass spectrometer . 34
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KL Kullback-Leibler. 10, 26

KL K-nearest neighbours. 25

LLM large language model. 6, 7

LNBNN local naive bayes nearest neighbours. 12

marine biomass A fancy term for fish. To get super technical, marine biomass is a super-set,
which includes fish, whales, plankton, crustaceans, marine animals and plants. A fish
processing plant will deal with marine biomass from many forms of organic matter.
So marine biomass is a catch-all term to refer to the incoming biological materials that
enter the factory . 1–7, 10, 11, 20, 21, 27, 28, 46, 50

mass The amount of matter in an object . 33

mass charge ratio The mass charge ratio m/z is useful, as it allows us to differentiate be-
tween molecules of the same mass, but different charges, or the same charge but dif-
ferent masses . 33

mass spectrum The mass spectrum is the artefact of the mass spectrometry technique. A
mass spectrum measures mass charge versus intensity, where the charge ratio or m/z
ratio is on the x-axis, where m is the mass - the amount of matter in an object, z is the
charge of the ion. The mass charge ratio m/z is useful, as it allows us to differentiate
between molecules of the same mass, but different charges, or the same charge but
different masses. The intensity on the y-axis refers to the relative abundance of ions in
a mass spectrum, and the intensity peak in a mass spectrum represents the number of
ions with a particular mass-to-charge ratio that is detected by the mass spectrometer .
31, 34

MCIFC multiple class-independent feature construction method. 38–44

ML machine learning. 28, 29

MLM masked language modelling. 27

MO mineral oil. 7, 16, 17, 33

MRMR maximum relevance - minimum redundancy. 27, 44

MS mass-spectrometry. 3, 14, 15, 18, 21, 22, 24–27, 29, 33, 34, 50

MT-GP multi-tree genetic programming. 24, 38, 39, 41–44

NBNN naive bayes nearest neighbours. 12

NLP nautral language processing. 27

NSP next sentence prediction. 27

offline see online . 28

offline learning The dataset is static, the system is not constantly trained on new data. It
is trained once, and then deployed as is. Offline learning s the opposite of online
learning. Not to be confused with offline . 28

54



online In a factory setting, the terms online and offline have distinct meanings. For a fac-
tory where efficiency and continuous flow of the production line are vital, there exists
a tradeoff between online and offline. Online describes processes that are instanta-
neous and inexpensive, these are often low resolution but can be done at scale and
at speed, so they don’t slow down the production line. Conversely, offline means it
will take days, take for example a tissue sample that has to be sent away for analysis,
where results won’t return for several days. We want to avoid offline, unless strictly
necessary, or provide a significant benefit. Not to be confused with online learning .
13

online learning Online learning refers to a model that can be updated and adapt to new
instances after its initial training. Take for example the Tesla FSD training programme.
The FSD edge cases are referred to as the long tail of computer vision. These edge
cases are where the car demonstrates undesirable behaviour, e.g. a crash, swerve, un-
safe/irregular driving, are sent back to the DOJO computing facility, and the model
is retrained via Monte-Carlo simulation of that edge case, to perform the desired be-
haviour. This human-in-the-loop online learning is a powerful method to bootstrap
algorithms for robustness. Not to be confused with online Online learning is the op-
posite of offline learning . 25, 28, 30

part A fish part refers to which tissue of the fish body the sample was taken from. The fish
parts considered in this research include fillet, frames, gonads, head, liver & skin . 14,
15, 21, 24, 25, 33

PCA principal component analysis. 9, 25, 35, 36, 38

PCA-LDA principal component analysis - linear discriminant analysis. 8, 9, 22, 35

PFR Plant and Food Research New Zealand Ltd.. 17, 36

phenotype In biology, the expression of a gene, e.g. hair colour. In Evolutionary Compu-
tation, the output of an encoded representation, e.g. a classification label, regression
output, or one-hot encoded vector . 24

PSO particle swarm optimisation. 24, 44

QA quality assurance. 15

QC quality control. 2, 21, 29, 33

QCA qualitative contaminant analysis. 15, 49

quantification Quantification assesses how much a sample is contaminated. Take for ex-
ample cross-species contamination, quantification is interested in the percentage of
contaminants from each species, e.g. 70% Hoki, and 30% Mackerel . 6, 8, 15, 16, 18, 47

R-CNN region-based convolutional neural networks. 27

recall Recall is a metric for classification accuracy. It measures the proportion of actual
positives that were correctly identified. It can be thought of as TP

TP+FN , where TP is
true positives, and FN is false negatives. contamination detection requires a high
precision. There is lenience for false positives, a flex-factory should catch all samples
that are truly contaminated. Closely related, and not to be confused with precision .
15
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REIMS rapid evaporative ionisation mass spectrometry. 3–8, 10–13, 18, 21, 22, 25, 27, 31,
33–36, 38, 50

RSD relative standard deviation. 25, 29, 33

sample attribution Sample attribution is a chemistry term, that refers to identifying which
individual sample a measurement was taken from. In mass spectrometry, several
measurements are taken from the same fish tissue sample. Being able to identify mea-
surements from a common origin, i.e. the same sample, is important for traceability.
This can be used to isolate contaminated samples or deduce a sample’s path through
the factory . 11, 16, 17, 47

seasonal variation The composition of marine biomass varies by season, a reoccurring con-
ceptual drift. The temperature of the ocean, diets of fish, changes from Winter to
Summer, oceans heat up, migration/spawning. For example, while spawning, Hoki
changes composition, extracting their lipids, and putting them all into their eggs, after
spawning adult Hoki is a mess [3] . 6, 7, 17, 18, 20, 21, 28, 30

significant markers Significant Markers (or important variables) are ions that are unique to
a specific offal cut, and present in all samples [15] . 29

SOTA state-of-the-art. 29

spawning Spawning is the reproductive process in which marine biomass releases their
eggs and sperm into the water. This is important for producing new offspring. The
spawning of [3] is of particular interest, as it causes seasonal variation . 6, 7, 20, 21

species This refers to the species of fish that the tissue sample belongs to. The fish species
in this research are Hoki and Mackerel. The species considered in previous work
[18] were Bluecod, Gurnard, Snapper & Tarakihi. For differentiating between distinct
species in fish fraud detection see [14]. See [75] for the biological definition from Dar-
win . 14, 21, 24, 25, 33, 35

spoilage Spoilage in a fish processing context refers to the decay or deterioration of fish
or seafood products, resulting in a loss of quality and edibility. Fish spoilage can oc-
cur due to various factors such as bacterial growth, enzymatic activity, oxidation, and
physical damage during handling, transportation, or storage . 2, 7, 15

ST-GP single-tree genetic programming. 24, 38–40, 42, 43

stochastic Stochastic is the opposite of deterministic. A deterministic algorithm will pro-
duce the same results each run. A stochastic algorithm does not, it has a degree of
randomness to it, in which the results will vary with each run. The stochastic nature
of genetic programming is their strength, which allows for global search . 43

SVM Support Vector Machine. 27, 38, 44

t-SNE T-distributed stochastic neighbour embedding. 26, 35–38

taxonomy A taxonomy is a hierarchical classification system that organizes a set of con-
cepts or subjects into categories and subcategories based on shared characteristics.
Taxonomies are often used in fields such as biology, where they are used to classify
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and organize living organisms into a systematic hierarchy based on their characteris-
tics and evolutionary relationships. They are also used in other fields, such as infor-
mation science and library science, to classify and organize knowledge in a way that
is easy to understand and navigate . 25, 28, 29

tissue See part . 3, 14, 33, 42, 43, 50

traceability Traceability is a term from quality assurance, which is important in a factory
setting. Should a problem arise, a factory needs to be able to isolate and determine
the origin and potential causes for that problem. Take for example fish tissue con-
taminated by mineral oil. After detecting said contamination, traceability would be
concerned with identifying other tissue samples from the same fish that are likely con-
taminated . 4, 10–12, 22, 28, 47, 49, 50

transfer learning Transfer learning is a machine learning technique where shared knowl-
edge is transferred between related tasks. Take for example, the source task of riding a
bike, and the target task of riding a motorcycle. Although the tasks are different, there
is shared knowledge from the source task, that will be useful when performing the
target task. In layman’s terms, if you already can ride a bike, it will be easier to ride a
motorcycle . 10, 12, 18, 25, 27, 29

UMAP uniform manifold approximation and projection for dimension Reduction. 26, 35–
38
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