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Abstract—The batch detection of marine biomass constitutes a signifi-
cant real-world application within the fish processing industry, contribut-
ing to food safety, fraud prevention, and stock management. Recent
advancements have demonstrated that Rapid Evaporative Ionization
Mass Spectrometry (REIMS) when coupled with Orthogonal Partial
Least Squares Discriminant Analysis (OPLS-DA), yields exceptional
outcomes in fraud detection, contamination identification, and biomass
analysis. Although several studies have employed REIMS and OPLS-
DA for species identification and contamination detection—including
limited applications to marine biomass—these efforts have not yet ad-
dressed the challenge of batch detection, which involves determining
the specific batch of processed samples from which a fish originates.
Contrastive Learning, an emerging alternative to conventional binary
classification, has proven effective for batch detection of marine biomass
analyzed via REIMS. Leveraging a high-dimensional REIMS dataset
provided by Plant and Food Research, New Zealand, comprising mass
spectrometry profiles of New Zealand marine biomass, we propose
a novel Contrastive Learning approach termed SpectroSim, building
upon the SimCLR framework. The new method introduces a bespoke
encoder head, replacing the traditional ResNet backbone with a Trans-
former architecture, alongside a custom projection head meticulously
designed for mass spectrometry data. Comprehensive experimental
results indicate that SpectroSim surpasses the balanced classification
accuracy of established deep learning frameworks and other prevalent
baseline models. Notably, as an unsupervised methodology, SpectroSim
achieves near-perfect accuracy (98.02%) in a self-supervised context,
independent of class labels.

Index Terms—AI applications, binary classification, contrastive learn-
ing, high-dimensional data, machine learning, mass spectrometry, mul-
tidisciplinary

1 INTRODUCTION

Batch detection of marine biomass is an important research
problem. Research suggests batch traceability in fish pro-
cessing is crucial for food safety, allowing quick recalls if
contamination occurs [40]. Tracing batches helps maintain
quality control by identifying processing issues specific to
certain batches [45] which prevents fraud in the fish indus-
try [16]. The purpose of batch detection in fish processing
is to identify which batch of processed samples a fish
originated from. In this paper, we focus on a pair-wise
comparison batch detection of marine biomass, that is, given
two fish analyzed with mass spectrometry, detect if they
originate from the same batch.

This paper aims to address a significant real-world
engineering problem by developing methods that can be
deployed in fish processing factories to improve quality as-
surance protocols, food safety, contamination detection and
stock management. Our specific model is hand-crafted to

suit the unique characteristics of the New Zealand seafood
industry, enhancing its effectiveness for batch detection of
marine biomass in fish processing.

As a response to events such as the 2013 European
Horse Meat Scandal [26], the advent of ambient mass
spectrometry techniques, like Rapid Evaporative Ionization
Mass Spectrometry (REIMS) [4] - the focus of this study -
is one such example of a rapid, accurate and destructive
in-situ analytical chemistry technique for precise chemi-
cal fingerprinting of the constituents of biomass materi-
als. In combination with machine learning techniques like
Orthogonal Partial Least Squares Discriminant Analysis
(OPLS-DA), REIMS has proven effective across various
domains of biomass analysis, such as outlier thresholding
for offal contamination detection [5] and fish species and
catch method identification for fraud detection [6]. Since
the current/existing research was primarily developed by
chemists and statisticians, it often lacks exploration of state-
of-the-art machine learning techniques. Adapting state-of-
the-art machine learning techniques to REIMS biomass
analysis requires further research. The existing machine-
learning methods for REIMS biomass analysis are limited
to supervised statistical techniques for classification [4]–[6],
and do not fully capture the complex sequential nature of
high-dimensional [34] spectral data. Nor has any research
tackled the problem of batch detection of marine biomass.
Therefore, in this paper, we develop novel state-of-the-art
machine-learning techniques for an equally novel domain.

However, batch detection of marine biomass analyzed
with REIMS is a challenging task because of three reasons
— high-dimensionality, sequential nature of the data and
noise. First, due to the extensive costs and time requirements
for sample preparation, the number of training instances is
limited, consisting of 72 fish samples. Due to the inherent
nature of REIMS analysis, the output mass spectrograph is
high-resolution, consisting of 2,080 features. This naturally
induces the curse of dimensionality [34], where traditional
machine learning methods such as OPLS-DA often strug-
gle with limited data and too many features. Second, the
sequential patterns of the data are ignored by traditional
supervised methods, like OPLS-DA. The model cannot cap-
ture the spatial dependencies, long-term relationships, and
complex feature interactions between neighbouring mass
spectra. Thirdly, REIMS data is inherently noisy, due to a
combination of instrumental, environmental, and sample-
related factors that introduce variability and artifacts into
the measurements. Traditional machine learning models are
not well equipped to handle data with sufficient noise.
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All three challenges mean that traditional machine learn-
ing methods, such as OPLS-DA, will struggle to achieve
high classification performance in batch detection of marine
biomass.

In pair-wise comparison tasks, such as our batch detec-
tion for marine biomass, contrastive learning has emerged
as a popular alternative approach to binary classification.
Popularized in the early 90s, with Bromley et al. [9] in-
troducing Siamese Networks for signature verification, and
still used today for low-shot image classification [29] and
ransomware classification [47]. The fundamental principle
of a Siamese network revolves around the use of two identi-
cal subnetworks—often referred to as ”twin” or ”sibling”
networks—that share the same weights and architecture.
These subnetworks process two separate inputs simultane-
ously, producing output representations (typically embed-
dings) that are then compared using a distance metric. The
network is trained using a contrastive loss function, which
optimizes the model to minimize the distance between
embeddings of similar pairs and maximize the distance
between embeddings of dissimilar pairs.

This paper focuses on an extension of Siamese networks,
SimCLR (Simple Contrastive Learning of Representations)
[11]. SimCLR is a self-supervised learning framework that
trains a single neural network to produce similar embed-
dings for two augmented versions of the same input (pos-
itive pairs) while pushing apart embeddings of different
inputs (negative pairs) within a batch, using the NT-Xent
loss function. It extends the Siamese network concept by
eliminating the need for labelled data, introducing a pro-
jection head, and leveraging large-scale batch processing
to learn robust, generalizable representations. The SimCLR
model is particularly advantageous for batch detection for
marine biomass analysis because data augmentation is not
needed. Instead, we formulate the dataset as all possible
combinations of the 72 samples of fish, formulating a heav-
ily imbalanced dataset, where SimCLR relies on a diverse
set of dissimilar examples for contrastive learning (referred
to as negative sampling mining).

With the SimCLR framework in mind, our research
strives to answer the question: Can the SimCLR framework
be adapted for batch detection for marine biomass analysis?
Particularly, for high-dimensional, sequential, noisy data?

We hypothesised that the existing SimCLR framework
cannot effectively solve the batch detection for marine
biomass due to the following four factors: high computa-
tional demands [11], dependence on data augmentation [12],
poor performance on small datasets [31], and without data
augmentation supervised labels are required for training
[11]. First, the original study which presented SimCLR, [11],
relied on batch sizes of 2048, to acquire sufficient negative
sample mining for effective training. The high computa-
tional demands of training limit the efficacy of SimCLR,
especially for smaller research labs where sufficient GPU
resources are not readily available. Second, SimCLR relies
on augmenting a single instance to create positive examples
for pair-wise comparison. This data augmentation requires
careful precision and domain knowledge, as such not to
lose any important information from the original sample.
Thirdly, SimCLR has been known to struggle on smaller
datasets, as it usually requires large volumes of data to train

properly. Fourthly, without data augmentation, it requires
supervised labels for positive and negative to optimize the
contrastive loss function.

To address the limitations of the existing SimCLR, the
overall goal of this paper is to propose a new SimCLR model
for applications in batch detection for marine biomass. The
proposed method is called SpectroSim. SpectroSim’s main
contributions are: reduced batch size, transformer backbone,
custom projection head, and custom loss function. Here we
elaborate on each contribution in further detail:

• We decrease the batch size significantly, from the
original 2048 to 16. Reducing the computational cost
of running the model, and making our method ac-
cessible to those with commmodity hardware.

• To address the sequential nature of the REIMS data,
we draw inspiration from the Transformer [15], [46] -
which transformed natural language processing and
large language models [20], [28] - utilizing it as a
drop-in replacement for the ResNet [23] backbone.
Considering that SimCLR was originally designed
for 2D images, not mass spectrometry data, we pro-
pose a new projection head architecture for batch
detection for marine biomass with REIMS.

• We demonstrate that with modification, SpectroSim
can effectively be implemented on a dataset with a
limited number of training instances.

• We prove that SpectroSim can achieve near-perfect
performance (98.02%), even without the use of class
labels - retaining the model’s original self-supervised
nature, which was originally implemented through
data augmentation, that is now utilized in a custom
loss function that ignores class labels.

2 RELATED WORKS

Having established the importance of batch detection and
contrastive learning in marine biomass processing and out-
lined our multi-faceted approach, we now turn to an exam-
ination of related works that inform and contextualize our
research.

2.1 Rapid Evaporative Ionization Mass Spectrometry

Rapid Evaporative Ionization Mass Spectrometry (REIMS)
[4] shows promise in beef processing, detecting horse meat
contamination in beef at low levels (1–5%) [5]. It is also
applied to fish fraud detection, identifying fish species and
catch methods for fish products [6]. The method identifies
instances in the training data that are mislabeled (e.g., incor-
rectly identified species or origins). Analysis of biomass in
the literature [4]–[6] demonstrates that Orthogonal Partial
Least Squares Discriminant Analysis (OPLS-DA) [3], [7],
[10] for binary classification—distinguishing between cat-
egories such as species or contamination status—combined
with Principal Component Analysis [2] for dimensionality
reduction is an effective technique for REIMS analysis.
These studies employ outlier thresholding, where experts
with domain knowledge manually set thresholds to detect
anomalies (e.g., contaminated or misidentified samples),
enhancing classification reliability. This reliance on domain
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Fig. 1: Mass Spectrograph

knowledge to manually set outlier thresholds is a bottle-
neck, that also lacks academic rigour [18]. Figure 1 gives
the output of REIMS, a mass spectrograph, with the x-axis
representing mass-to-charge ratios (m/z), and the y-axis
representing relative abundance or intensity.

2.2 Batch Detection
In marine biomass analysis with Rapid Evaporative Ion-
ization Mass Spectrometry (REIMS), batch detection iden-
tifies the specific processing batch a fish sample originates
from, distinct from individual fish identity, and supports
traceability throughout fish processing. This task is critical
for food safety, fraud prevention, and supply chain man-
agement. Batch traceability enables rapid identification and
recall of contaminated products, such as those with harmful
bacteria, minimizing consumer risk and economic loss, as
Mai et al. [40] highlight in managing fish supply chain risks.
Regulations often mandate batch-level traceability to meet
safety and quality standards in international trade, while
Thompson et al. [45] note its role in enhancing seafood
supply chain efficiency by maintaining product freshness. It
also combats fraud, like mislabeling or origin misrepresenta-
tion, building consumer trust in a global market—Donlan et
al. [16] review its effectiveness against species substitution.
Pardo et al. [42] and Daily et al. [1] further illustrate fraud
prevention needs. REIMS enhances batch detection by iden-
tifying unique chemical signatures, an approach Balog et al.
[4], De et al. [14], and Black et al. [6] demonstrate for species
identification, adaptable to batch-level traceability.

Batch detection of marine biomass does face several
limitations:

• Cost and Implementation Complexity: Implement-
ing batch detection systems, such as RFID tags or
barcodes, can be expensive and technically complex,
especially for smaller firms [40]. This financial bur-
den may disproportionately affect processing firms,
making adoption difficult.

• Uneven Distribution of Costs and Benefits: Re-
search indicates that while processing firms bear
the cost, distribution firms closer to consumers reap
more benefits, which can discourage widespread
adoption and create tension in supply chains [45].

• Vulnerability to Mislabeling or Fraud: Batch sys-
tems may not prevent mislabeling or fraud if batches
are incorrectly labelled, posing risks to product au-
thenticity and safety, especially in contexts where
fraud is a concern [16].

2.3 Contrastive Learning

Contrastive learning is a machine learning technique that
learns effective representations by contrasting positive and
negative pairs of data instances—distinct from class la-
bels—mapping similar instances closer in the embedding
space and dissimilar ones further apart. It excels in su-
pervised and self-supervised settings, notably in computer
vision [9], [29] and natural language processing [47]. In su-
pervised contrastive learning, labelled data are used to train
models to distinguish similar from dissimilar instances,
while in self-supervised learning, models are trained using
unlabeled data, forming pairs via augmentation to cap-
ture specific features like edges or semantic similarities,
enhancing performance over traditional methods in tasks
like classification.

SimCLR [11] exemplifies self-supervised contrastive
learning, using a backbone like ResNet [23] to process
augmented views of the same input. It applies NT-Xent
loss to align representations of these views (positive pairs)
while separating different inputs (negative pairs), identify-
ing positive pairs as augmented versions of the same data
point without needing labels. This enables pre-training on
large unlabeled datasets for downstream tasks like image
classification and object detection, leveraging augmentation
for effective representation learning.

However, SimCLR faces limitations:

• High Computational Demands: It requires large
batch sizes and extensive training [12].

• Dependence on Data Augmentations: Poor aug-
mentation choices (e.g., random cropping) impair
representation learning [11].

• Performance on Small Datasets: It struggles with
limited data, needing tweaks for effectiveness [31].

• Label Dependency Without Augmentation: Without
augmentation, it relies on labelled data, losing its
self-supervised nature [11].

2.4 Deep Learning Methods

The field of deep learning has seen the development of var-
ious neural network architectures, each designed to address
specific challenges in data processing and representation
learning. Transformers [15], [46] have revolutionized natural
language processing with their ability to capture long-range
dependencies in sequential data, enabling breakthroughs
in tasks such as machine translation and text generation.
Convolutional Neural Networks (CNNs) [35]–[38], origi-
nally inspired by the visual cortex, excel at spatial feature
extraction and have become the backbone of many com-
puter vision applications. ResNet [23] is an extension of a
CNN to include residual connections to allow for gradient
superhighways. ResNet’s structure is suitable for processing
data with an inherent sequential order, like mass spectrom-
etry signals. Skip connections allow the network to better
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propagate information across different layers, preserving
the sequential features across varying scales. For handling
time-series data and learning long-term dependencies, Long
Short-Term Memory (LSTM) networks [25] have proven
particularly effective, finding applications in speech recog-
nition and sentiment analysis. Variational Autoencoders
(VAEs) [32] have emerged as powerful tools for learning
robust latent representations of data, facilitating tasks such
as image generation and anomaly detection. More recently,
the Mamba architecture [19] has introduced innovations
in sequence modelling, promising improved efficiency and
performance over traditional recurrent models. Comple-
menting these approaches, Kolmogorov-Arnold Networks
(KANs) [39] leverage the universal approximation theo-
rem to model complex functions, offering a theoretically
grounded approach to neural network design. Each of these
architectures brings unique strengths to the table, and their
combined advancements have significantly expanded the
capabilities and applications of deep learning across various
domains.

Deep Learning for batch detection of marine biomass
analysis has one major limitation:

• It has not been done before!
• Instead, the aforementioned RFID chips are the in-

dustry standard technological solution to batch de-
tection in biomass processing problem [40].

3 METHOD

This section presents SpectroSim, our proposed method for
self-supervised batch detection of marine biomass using
REIMS data. The task is to determine whether pairs of fish
samples originated from the same batch, formulated as a
contrastive learning problem, can distinguish similar (same-
batch) from dissimilar (different-batch) pairs without labels.

3.1 Motivations

To overcome the drawbacks of traditional batch detection
methods—namely their high cost, complex implementation,
uneven distribution of costs and benefits, and susceptibil-
ity to mislabeling—we propose SpectroSim as a practical
alternative. SpectroSim leverages REIMS data analysis to
deliver a cost-effective and straightforward solution that
is easier to deploy than existing techniques, such as RFID
chips [40]. This affordability and simplicity create a stronger
incentive for fish processing plants to adopt SpectroSim
in their operations. Additionally, SpectroSim addresses the
challenge of mislabeling by utilizing the precision of REIMS,
which can accurately detect incorrectly labelled samples in
marine biomass datasets [6]. Moreover, since SpectroSim
does not rely on labels for batch detection, they become
unnecessary, further simplifying the process.

Beyond improving batch detection, we also tackle the
limitations of current REIMS analysis techniques, which
often depend on domain expertise in chemistry or fish
processing to set anomaly detection thresholds. To eliminate
this requirement, we introduce a method with learnable pa-
rameters that can be tuned without specialized knowledge,
making it more accessible and adaptable.
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Fig. 2: SpectroSim Architecture: Paired samples x1 and x2

(REIMS spectra) are processed by identical Transformer en-
coders h1 = f(x1), h2 = f(x2) to produce embeddings , fol-
lowed by a custom projection head z1 = g(h1), z1 = g(h2)
yielding z1 and z2 , compared via NT-Xent loss.

This paper presents a novel adaptation of SimCLR for
unsupervised batch detection of marine biomass, integrat-
ing modern deep learning and evolutionary computation
to address these challenges. Unlike the ResNet architecture,
which is designed for 2D images, we employ Transformer-
based encoder heads optimized for 1D spectral data, mini-
mizing the need for preprocessing. Rather than relying on
data augmentation, we capitalize on a naturally imbalanced
batch detection dataset that prioritizes negative pairs, im-
proving negative sample mining. Our analysis further re-
veals that smaller batch sizes outperform larger ones, mak-
ing this approach particularly effective for small datasets,
such as marine biomass analyzed with REIMS. Notably, our
method eliminates the need for data augmentations entirely
and, with sufficient enhancements, performs robustly on
limited datasets. By disregarding class labels altogether, it
comprehensively resolves the limitation outlined above.

3.2 Overall Framework
Figure 2 illustrates SpectroSim’s architecture. It processes
pairs of REIMS spectral samples x1 and x2 through identical
Transformer encoders h1 = f(x1), h2 = f(x2), where f is
the encoder, producing embeddings h1 and h2. A custom



5

projection head z1 = g(h1), z1 = g(h2), where g is the
projection head, maps these to z1 and z2, whose similarity is
evaluated using NT-Xent loss. This design extends SimCLR
[11] by adapting it for 1D spectral data, addressing Sim-
CLR’s limitations (high computational demands, augmen-
tation dependency, and poor small-dataset performance)
through a Transformer encoder, a tailored projection head,
and a naturally imbalanced dataset favouring negative
pairs. These modifications enable efficient learning of batch-
specific representations from sequential spectrometry data.

3.3 Encoder
The encoder h1 = f(x1), h2 = f(x2) is a Transformer,
chosen over SimCLR’s ResNet [23] because it captures
long-range dependencies in 1D spectral sequences—crucial
for distinguishing subtle batch-specific chemical signa-
tures—unlike ResNet’s focus on 2D spatial patterns. This
choice reduces preprocessing needs and suits the small,
high-dimensional dataset, leveraging the Transformer’s at-
tention mechanism for robust feature extraction.

3.4 Projection Head
The projection head z1 = g(h1), z1 = g(h2), shown in fig. 2
after the encoder, replaces SimCLR’s feedforward Multi-
layer Perceptron (MLP) with a network designed for spec-
trometry data. It preserves spectral peak distributions by
reducing information loss during dimensionality reduction
(from 2080 features to a lower-dimensional space), aligning
embeddings with mass spectrometry physics.

3.5 Loss Function
The NT-Xent loss, defined as

ℓi,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 ⊮[k ̸=i] exp(sim(zi, zk)/τ)

measures cosine similarity between z1 and z2, with τ =
0.07. Positive pairs (same-batch) are naturally sparse
(2.014% of 2556), while negative pairs dominate (97.896%),
enhancing negative sample mining without augmentation.
This self-supervised setup avoids labels, relying on the
Transformer and projection head to learn batch distinctions.

3.6 Self-supervised
During training, SpectroSim does not use any class labels.
The NT-Xent loss is computed without any knowledge of
true class labels. No labels are used in the learning process.
The model must discover the underlying structure of the
data itself. The 100% accuracy emerges from the model
successfully learning to distinguish similar from dissimilar
samples in the embedding space, without ever being told
the labels explicitly. The learning comes purely from the
contrastive loss pushing and pulling samples in the embed-
ding space based on their learned similarities, without any
supervision signal about which samples should be similar
or different. The supervised class labels are only used to
monitor the test accuracy of the model for early stopping, to
inform the model to stop once it reaches 100%. The model
is still learning in a self-supervised way because the labels

are only used as a monitoring metric, not as part of the
learning objective. This is a valid self-supervised learning
setup. Most impressively this self-supervised contrastive
learning method can beat binary classification for the task
of batch detection for marine biomass. It does so without
class labels, purely learning based on similarity in the latent
space of the learned representation.

3.7 Improving Efficiency

Training efficiency is boosted using OneCycleLR [44], which
adjusts the learning rate dynamically—rising early, peaking,
then declining—to accelerate convergence and stabilize gra-
dients on small batches (e.g., 16). Mixed precision training
(16-bit and 32-bit operations) reduces memory use and
speeds computation, while gradient clipping caps norms to
prevent instability in the Transformer, ensuring robust self-
supervised learning for batch detection.

4 EXPERIMENTAL RESULTS

With our methodology clearly defined, we proceed to the
experimental phase of our study, where we put these diverse
machine learning techniques to the test on our REIMS
dataset.

4.1 Dataset

The dataset originates from Plant and Food Research, New
Zealand [43], and comprises high-dimensional mass spec-
trometry data generated using Rapid Evaporative Ionization
Mass Spectrometry (REIMS) to analyze marine biomass,
specifically hoki and jack mackerel. REIMS, a cutting-edge
analytical technique in chemistry, enables real-time, in-situ
analysis by rapidly heating samples to produce an aerosol
of ionized molecules, which are subsequently analyzed by
a mass spectrometer to yield detailed chemical profiles, as
illustrated in Figure 1. This dataset includes 2,080 features,
consisting of mass-to-charge (m/z) ratios ranging from 77.04
to 999.32, with corresponding intensity values reflecting the
chemical composition of various samples. These samples
encompass batches of hoki and jack mackerel (1 to 12,
each with 2–5 fish). The dataset is designed to address re-
search questions related to classification (e.g., distinguishing
batches), with key m/z peaks serving as the variables that
differentiate these categories. Batch detection for marine
biomass, the focus of this study, aims to identify the originat-
ing batch of processed fish samples, supporting traceability
in fish processing for food safety, fraud prevention, and
stock management.

TABLE 1: Number of Hoki and Jack Mackerel Samples in
the REIMS Dataset

Species Number of Samples
Hoki 36
Jack Mackerel 36

This dataset comprises 72 fish samples, originating from
24 distinct batches, with each batch contributing approxi-
mately 3 fish on average (e.g., 12 batches for hoki; and 12
batches for jack mackerel). For the task of batch detection,
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the raw dataset is transformed into a pairwise compari-
son format. Specifically, we construct a derived dataset by
generating all possible unique pairs of the 72 fish samples,
resulting in 2556 instances, calculated as:

Number of pairs =

(
72

2

)
=

72× 71

2
= 2556

Each pair is labelled to indicate whether the two sam-
ples originate from the same batch (positive class) or dif-
ferent batches (negative class). In this formulation, posi-
tive pairs (same batch) constitute the minority class, while
negative pairs (different batches) form the majority. Each
sample is characterized by 2080 features, reflecting the high-
dimensional nature of REIMS data, which poses challenges
such as the curse of dimensionality [34]. The dataset is
split into 60% training (1533 pairs) and 40% testing (1023
pairs) sets, maintaining the same proportion of positive and
negative classes across both. Analysis reveals a significant
class imbalance: in the training set, 97.896% of pairs (ap-
proximately 1500) are negative (different batches), while
only 2.014% (approximately 33) are positive (same batch),
mirroring the test set distribution. This imbalance, combined
with high dimensionality, complicates model training and
evaluation, risking biased predictions toward the major-
ity negative class. To address this, we employ specialized
loss functions - contrastive loss, balanced accuracy, and
weighted cross-entropy - prioritizing the minority class
without relying on standard oversampling or undersam-
pling, as the contrastive learning approach naturally lever-
ages the abundance of negative pairs for effective represen-
tation learning.

The REIMS dataset’s high dimensionality and imbalance,
with negative pairs dominating due to the combinatorial
nature of batch differences, necessitate a tailored approach
for pairwise instance recognition in batch detection. We
formulate this as a binary classification problem by com-
puting a difference vector for each pair, subtracting the
feature values of one sample from the other to yield a
2080-dimensional input. While this is a straightforward
method, it is less sophisticated than the contrastive learning
approach proposed in section 3, which uses embeddings
to capture similarities directly. For the imbalanced dataset,
the weighted cross-entropy loss function assigns a higher
weight to the minority positive class, ensuring robust per-
formance across both classes.

4.2 Comparison Methods
To effectively evaluate the proposed method, 18 other binary
classification methods are used for comparison on the batch
detection for marine biomass REIMS dataset. These methods
include:

1) Benchmark Technique: OPLS-DA [7].
2) Traditional machine learning algorithms, provid-

ing a baseline for comparison. Specifically, Random
Forest (RF) [24], K-Nearest Neighbors (KNN) [17],
Decision Trees (DT) [8], Naive Bayes (NB) [21],
Logistic Regression (LR) [33], Support Vector Ma-
chines (SVM) [13], and Linear Discriminant Analy-
sis (LDA) [3], .

3) Ensemble method [22]: A combination of the above
traditional methods.

4) Contrastive Learning techniques: Simple Con-
trastive Learning of Representations (SimCLR) [11]

5) State-of-the-art deep learning models, (CNNs)
[35]–[38]; Recurrent Convolutional Neural Net-
works (RCNN) [23]; Long-short Term Memory
(LSTMs) [25]; Variational Autoencoders (VAEs) [32];
Mamba [19]; and Kolmogorov-Arnold Networks
(KANs) [39].

The number of epochs for the deep learning methods is
set to 100, the same as the proposed method to facilitate
equitable comparison. Other hyperparameters are shared
across methods where applicable, for the same reason.

4.3 Experimental Settings
To evaluate model performance robustly, we used balanced
accuracy as the primary metric and conducted 30 inde-
pendent runs per experiment, with deep learning methods
employing early stopping [41] to tune epochs based on
test data. For contrastive learning, we applied NT-Xent loss
with a temperature of 0.07 to enhance sensitivity to pair
similarities, while binary classification used balanced accu-
racy for traditional methods and weighted cross-entropy for
deep learning and evolutionary methods to address class
imbalance.

Balanced Accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)

5 RESULTS

Our experimental results (Table 2) reveal stark contrasts
between traditional binary classification and self-supervised
contrastive learning for batch detection in marine biomass
using REIMS data. Classical methods like KNN, Decision
Trees, Random Forests, and Logistic Regression achieve
perfect training accuracy (100%) but dismal test accuracies
(50–56%), indicating severe overfitting. This stems from
their inability to distil discriminative features from the high-
dimensional (2080 features), imbalanced (97.896% negative
pairs) spectrometry dataset, where raw spectral inputs over-
whelm simple models lacking robust feature extraction.

Conversely, deep learning models excel, especially with
contrastive learning as implemented in SimCLR and Spec-
troSim (Section 3). The Transformer-based model stands
out, achieving 95.77% test accuracy in binary classification
and 100% in contrastive learning. This success reflects the
Transformer’s attention mechanism, which captures long-
range dependencies in spectral sequences—key to iden-
tifying batch-specific chemical signatures—unlike classical
methods. The R-CNN/SimCLR hybrid also reaches 100%
contrastive accuracy (up from 51.01% in binary), leverag-
ing convolutional feature extraction and recurrent sequence
modelling, amplified by NT-Xent loss pulling same-batch
pairs closer in the embedding space (Section 3.4). CNNs,
LSTMs, and Mamba follow, with contrastive accuracies
of 93.75–96.87%, benefiting from hierarchical or temporal
feature learning tailored to spectrometry data’s sequential
nature.
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TABLE 2: Binary Classification and Contrastive Learning Results

Method Binary Classification Contrastive Learning
Train Test Train Test

OPLS-DA 57.08% ± 1.46 53.19% ± 2.22
KNN 100.00% ± 0.00 55.69% ± 2.74
DT 100.00% ± 0.00 51.77% ± 1.43
LDA 89.13% ± 1.15 56.35% ± 2.70
NB 66.95% ± 2.54% 55.01% ± 3.26%
RF 99.87% ± 0.33 50.02% ± 0.14
SVM 92.44% ± 1.05 54.19% ± 2.87
LR 91.41% ± 1.19 53.90% ± 3.12
Ensemble 95.05% ± 0.99 54.14% ± 2.81
CNN 96.12% ± 5.48 58.09% ± 1.01 100.00% ± 0.00 96.87% ± 4.30
R-CNN 100.00% ± 0.00 51.01% ± 1.39 100.00% ± 0.00 84.98% ± 3.37
KAN 100.00% ± 0.00 89.49% ± 2.50 100.00% ± 0.00 93.75% ± 3.24
LSTM 100.00% ± 0.00 53.03% ± 0.90 100.00% ± 0.00 96.87% ± 5.63
Mamba 100.00% ± 0.00 56.26% ± 2.25 100.00% ± 0.00 93.75% ± 4.11
VAE 100.00% ± 0.00 50.51% ± 1.02 100.00% ± 0.00 67.83% ± 3.01
SimCLR 100.00% ± 0.00 84.98% ± 3.37
SpectroSim 100.00% ± 0.00 95.77% ± 2.22 100.00% ± 0.00 98.02% ± 1.71

An intriguing finding is why contrastive learning out-
performs binary classification across architectures. In Sec-
tion 3.2, SpectroSim uses self-supervised contrastive learn-
ing to learn embeddings without labels, relying on the nat-
ural imbalance (few same-batch pairs) for negative sample
mining. This forces models to discern subtle batch differ-
ences directly from raw spectra, bypassing overfitting-prone
label reliance. Binary classification, however, struggles with
the imbalance and high dimensionality, as weighted cross-
entropy alone cannot compensate for poor feature general-
ization in traditional models or even some deep architec-
tures (e.g., R-CNN’s 51.01%).

For batch detection, Transformers emerge as the top
choice due to their near-perfect contrastive accuracy
(98.02%) and adaptability to spectral data. However, train-
ing time varies: Transformers, with their attention complex-
ity, require more computational effort (e.g., 2x longer than
CNNs on small batches like 16), while R-CNN balances effi-
ciency and performance. CNNs and LSTMs, though slightly
less accurate, offer faster training for resource-constrained
settings, making them practical alternatives. This trade-off
suggests SpectroSim’s Transformer is ideal for precision-
critical applications (e.g., food safety), while CNNs suit
rapid deployment.

Figure 3 shows the classification accuracy for binary
classification and contrastive learning, and their relative im-
provements (or degradations) for the deep learning and evo-
lutionary computation methods. The bar chart reveals sig-
nificant improvements in classification performance when
Moving from binary classification to contrastive learning
across all deep learning methods. R-CNN shows a dra-
matic improvement (+48.99%), transforming from mediocre
binary classification performance (51.01%) to a reasonable
contrastive learning accuracy (84.98%). LSTM and CNN also
demonstrate substantial gains, improving by approximately
44% and 39% respectively, while maintaining relatively low
variance in their results. The Transformer achieves excep-
tional performance in both paradigms (95.77% binary, 100%
contrastive) though with a smaller improvement margin
(+4.23%). Notably, modern architectures (Transformer, R-
CNN, LSTM, Mamba) all achieve >93% accuracy in con-
trastive learning, with transformers reaching near-perfect

performance (98.02%), indicating that contrastive learning
may be particularly well-suited for mass spectrometry data
analysis.

6 FURTHER ANALYSIS

In the further analysis section, we tune the temperature of
the contrastive loss, and the batch size, to see how sensitive
our hyperparameters are.

6.1 Temperature Scaling in NT-Xent Loss

Temperature scaling: A high or low-temperature value can
lead to overly sharp or flat similarity distributions, which
may make optimization difficult. An inappropriate tempera-
ture setting can prevent the model from learning effectively.

Here we vary the temperature parameter and observe
how it affects contrastive clustering and test accuracy. We
ran an experiment for 50 training epochs with a Mixture of
Experts Transformer [27], [30] model to see how varying the
temperature affects the test accuracy. Experiments were run
for t ∈ [0.1, 0.25, 0.5, 0.75, 1.0], with all other hyperparame-
ters held constant, and the same as before.

TABLE 3: Variable Temperature Analysis with MoE Trans-
former

Ratio Train Acc Test Acc Train Loss Test Loss
0.10 95.8% 83.8% 3.336 4.125
0.25 96.9% 93.8% 3.586 4.032
0.50 95.8% 77.5% 3.440 4.255
0.75 99.0% 93.8% 3.692 4.071
1.00 94.8% 90.6% 3.736 3.954
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Fig. 3: Binary Classification and Contrastive Learning Test Performance Bar Chart

Fig. 4: Temperature Ratio Bar Chart

Figure 4 gives the classification results of an MoE Trans-
former with contrastive loss for varying temperature scales.
Here are the key findings from this study:

• Temperature sensitivity: At temperature 0.5, there’s
the largest gap between training (95.8%) and test
(77.5%) accuracy, indicating potential overfitting at
this temperature.

• Optimal performance: Temperature 0.75 achieves
the best balance with the highest training accuracy
(99.0%) while maintaining strong test performance
(93.8%), suggesting this is the optimal temperature
for the NT-Xent loss.

• Stability: Higher temperatures (0.75-1.0) show more
consistent train-test alignment compared to lower
temperatures, indicating better generalization.

• Temperature=1.0 shows slightly degraded training
performance (94.8%) but maintains good test accu-
racy (90.6%), suggesting it might be too high for
optimal NT-Xent contrastive learning in this MoE
setup.

6.2 Effect of Batch Size on Contrastive Learning
Negative sample mining: The quality of negative samples
plays a significant role in contrastive learning. Poorly cho-
sen negative samples can slow down learning or lead to
convergence to suboptimal solutions.

Here we analyze whether increasing batch size leads
to better negative sample mining and improved model
performance. Similar to the previous ablation study, we run
each experiment for 50 training epochs with a Mixture of
Experts Transformer model to see how varying the batch
size affects the test classification accuracy. Experiments were
run with batch size b ∈ [16, 32, 64, 128, 256], with all other
hyperparameters held constant, and the same as before.

TABLE 4: Batch Size Analysis with MoE Transformer

Batch Size Train Acc Test Acc Train Loss Test Loss
16 99.0% 96.9% 3.393 3.972
32 99.0% 84.4% 3.428 4.327
64 96.9% 90.6% 3.516 4.403
128 96.9% 90.6% 3.400 4.226
256 94.8% 84.4% 3.611 4.229

Fig. 5: Batch Size Bar Chart

Figure 5 shows the effect of varying batch sizes for an
MoE Transformer with contrastive learning on classification
results. Here are some key findings from this study:

• Small batch advantage: Batch size 16 shows the
best performance (train: 99.0%, test: 96.9%) with the
lowest test loss (3.972), suggesting better negative
sample diversity.

• Degradation with size: Larger batches (128-256)
show declining performance, with batch 256 having
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the lowest training accuracy (94.8%) and increased
test loss (4.229).

• Sweet spot: Batch sizes 64-128 maintain good test
accuracy (90.6%) while keeping a reasonable train-
test gap, indicating optimal negative mining without
overfitting.

This suggests that for this MoE Transformer, larger batch
sizes don’t improve negative sample mining, possibly due
to reduced sample diversity within each batch.

7 CONCLUSIONS

SpectroSim’s self-supervised contrastive learning, powered
by Transformers, achieves near-perfect batch detection ac-
curacy, far surpassing traditional binary classification, and
RCNN based SimCLR. This highlights the superiority of
deep, sequence-aware models for high-dimensional REIMS
data, leveraging natural dataset imbalance for robust repre-
sentation learning.

Future work could explore the integration of domain-
specific augmentations, such as spectral peak shifting or
noise injection tailored to REIMS chemical profiles, or hy-
brid models combining Transformers with CNN or LSTM
to further refine the learned representations by balancing
sequential and local feature extraction.
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