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Abstract 

Marine biomass composition analysis traditionally requires time-consuming processes and domain expertise. 
This study demonstrates the effectiveness of rapid evaporative ionization mass spectrometry (REIMS) combined 
with advanced machine learning (ML) techniques for accurate marine biomass composition determination. Using 
fish species and body parts as model systems representing diverse biochemical profiles, we investigate various ML 
methods, including unsupervised pretraining strategies for transformers. The deep learning approaches consistently 
outperformed traditional machine learning across all tasks. For fish species classification, the pretrained transformer 
achieved 99.62% accuracy, and for fish body parts classification, the transformer achieved 84.06% accuracy. We further 
explored the explainability of the best-performing and predominantly black box models using local interpretable 
model-agnostic explanations and gradient-weighted class activation mapping to identify the important features 
driving the decisions behind each of the best performing classifiers. REIMS analysis with ML can be an accurate 
and potentially explainable technique for automated marine biomass composition analysis. Thus, REIMS analysis 
with ML has potential applications in quality control, product optimization, and food safety monitoring in marine-
based industries.
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1  Introduction
The fish processing industry forms a critical component 
of the global seafood supply chain, transforming raw 
marine biomass into consumer products through multi-
ple stages. This process typically involves species sorting, 
cleaning, filleting, packaging, and quality control at vari-
ous checkpoints. Each stage presents unique challenges 

that can benefit from artificial intelligence (AI) and 
machine learning (ML) solutions. The traditional fish 
processing workflow begins with the arrival of the catch, 
in which workers must rapidly sort different species–a 
task prone to human error, particularly with similar-look-
ing fish. Then, the catch moves through the cleaning and 
filleting stations, where different body parts are separated 
for various products–from premium fillets to processed 
fish meal. Quality control occurs throughout, checking 
for freshness, proper handling, and accurate labeling. 
Finally, products are packaged and prepared for distri-
bution. Several critical challenges that exist within this 
workflow are as follows: 
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(1)	 Quality control: Mislabeling and fraud remain per-
sistent issues in the seafood industry (Black et  al. 
2017), with economic and food safety implications. 
Studies have shown significant rates of species sub-
stitution in various markets (Pardo et al. 2016).

(2)	 Product optimization: Different fish species and 
fish body parts have varying commercial values and 
uses, with some parts commanding premium prices 
in specific markets. The accurate classification of 
these parts ensures optimal resource utilization and 
maximizes economic value across the supply chain 
(Ghaly et al. 2013).

(3)	 Safety monitoring: The accurate tracking of pro-
cessed species volumes is essential for regulatory 
compliance and stock management (Pauly and Zel-
ler 2016).

These areas provide opportunities where automated 
analysis can significantly improve fish processing. Spe-
cifically, we explore the application of ML to rapid evapo-
rative ionization mass spectrometry (REIMS) data across 
two critical classification tasks, i.e., fish species identifi-
cation and body part classification. REIMS technology, 
combined with ML algorithms, aims to provide a promis-
ing solution for real-time, accurate analysis during pro-
cessing operations. Our focus on these specific tasks is 
driven by their direct impacts on industry pain points:

(1) Species classification helps combat fraud and 
ensures proper resource management. (2) Body part 
identification helps optimize processing efficiency and 
product value. (3) Accurate species counting supports 
regulatory compliance and sustainability efforts.

This study demonstrates how ML techniques applied to 
REIMS data can enhance the efficiency and accuracy of 
these critical fish processing operations while supporting 
broader goals of sustainability and food security in the 
seafood industry.

REIMS marine biomass analysis faces several chal-
lenges, such as the time-consuming manual ‘offline’ 
analysis, costly domain expertise required, high dimen-
sionality (Köppen 2000), few training samples, and the 
need for automated ‘online’ inference. However, ‘online’ 
inference in the domain of chemistry and fish process-
ing, should not be confused with ‘online’ learning from 
ML. The rapid nature of REIMS necessitates equally 
rapid inference of its results, as traditional analytical 
chemistry techniques, which take several hours, are 
slow (Jha 2015). Furthermore, current analytical meth-
ods for REIMS data often require domain expertise in 
chemistry and fish processing, which does not match 
the speed of REIMS. Traditionally, samples would be 
sent away for ‘offline’ analysis by domain experts in 
chemistry. Thus, we aim to develop methods capable 

of automated inference for ‘online’ analysis on the pro-
duction line of a fish processing factory. REIMS also 
produces high-dimensional data, with this particular 
dataset having 2080 mass-to-charge ratios as features 
but with limited training instances because of the time-
consuming and expensive task of sample preparation. 
In addition, industry applications require fast, accurate, 
and interpretable models that can be verified and trou-
bleshooted in real-world scenarios.

To address the aforementioned challenges, this study 
proposes several innovative ML approaches that provide 
automated inference, eliminating the need for domain 
expertise in chemistry and fish processing. To handle 
the high dimensionality of REIMS data, this study uti-
lizes deep learning (Vaswani et  al. 2017; Devlin et  al. 
2018) and evolutionary computation (Tran et  al. 2016, 
2019) that can address complex feature interactions in 
mass spectra with limited training instances. Techniques 
such as bidirectional encoder representations (BERT) 
(Devlin et al. 2018) and attention mechanisms (Vaswani 
et al. 2017) can capture complex, nonlinear relationships 
between features in high-dimensional data. To mitigate 
the limited number of training samples, we implement 
the unsupervised pertaining approach, which involves 
training the model on a large amount of unlabeled data 
before fine-tuning it on the limited labeled dataset. The 
model learns general features and patterns from the unla-
beled data, which can then be transferred to the specific 
task at hand, significantly improving performance when 
labeled data are scarce. Finally, we employ local interpret-
able model-agnostic explanations (LIME) (McCann and 
Lowe 2012) and gradient-weighted class activation map-
ping (Grad-CAM) (Selvaraju et al. 2017) to provide inter-
pretable outputs that identify important features and 
quantify their impact, making our models more accessi-
ble to domain experts in chemistry and fish processing.

The main contributions of the paper are as follows: 

(1)	 Real-time marine biomass analysis: This study 
demonstrates the use of REIMS combined with 
advanced ML techniques to enable automated anal-
ysis of marine biomass, which represents a signifi-
cant improvement over traditional, time-consum-
ing methods.

(2)	 ML on sequential data: This study demonstrates 
that deep learning approaches, particularly trans-
formers with and without progressive masking pre-
training, consistently outperform traditional ML 
methods for analyzing sequential REIMS data.

(3)	 Feature importance: The important mass-to-charge 
ratios for the best performing models are identified 
to enhance domain knowledge in fish processing 
and chemistry.
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2 � Related works
Building upon the foundation laid in the ‘Introduc-
tion’, this section delves deeper into the existing body of 
research on marine biomass analysis, exploring tradi-
tional methods and recent advancements in REIMS tech-
nology, while highlighting the gaps and challenges that 
our proposed approach aims to address. We also provide 
the necessary background on deep learning required.

2.1 � Marine biomass
Mislabeling is a significant issue in the global seafood 
industry, with a meta-analysis of genomic profiling meth-
ods finding an average mislabeling rate of 30% globally 
(Pardo et al. 2016). ML methods using REIMS data pro-
vide a promising solution to this problem by enabling 
more accurate fish species classification. For example, in 
2016, a restaurant in Melbourne was accused of serving 
catfish instead of dory (Pearl 2016), highlighting the need 
for better species detection techniques. REIMS tech-
nology, which works on raw and cooked biomass, can 
combat fraud by ensuring species authenticity. Approxi-
mately 40% of a fish is edible fillet, whereas the remaining 
60% can be repurposed into products such as fertilizers 
or high-value pharmaceutical-grade omega-3 concen-
trates. Fish oil, rich in omega-3 polyunsaturated fatty 
acids (Simopoulos 2011), is nutritionally essential but 
increasingly scarce in Western diets (FAO 2020). REIMS-
based ML methods in fish processing also help identify 
high-value parts for repurposing into valuable products, 
contributing to the increasing consumer demand for 
omega-3 supplements made from diverse marine bio-
mass (Panse and Phalke 2016).

2.2 � REIMS
Traditional approaches for analyzing marine biomass 
composition have long been the cornerstone of research 
and quality control in the seafood industry. These meth-
ods include gas chromatography-mass spectrometry 
(Wood et  al. 2022), nuclear magnetic resonance spec-
troscopy (Bettjeman et  al. 2018), and genomic profiling 
(Pardo et al. 2016). Although these techniques have been 
proven valuable, they often come with significant draw-
backs. These techniques are typically time-consuming, 
requiring extensive sample preparation and analysis time. 
In addition, they are labor-intensive, demanding skilled 
technicians to operate complex equipment and interpret 
results. Most importantly, these methods necessitate sub-
stantial domain expertise, limiting their accessibility and 
scalability in real-world applications. These limitations 
have spurred the search for rapid techniques for marine 
biomass analysis in fish processing.

In recent years, REIMS has emerged as a promising 
technique for the rapid and accurate analysis of biological 

samples, addressing many of the limitations of traditional 
methods. Since its introduction in the original paper 
by Balog et al. (2010), REIMS has demonstrated its ver-
satility and effectiveness across various applications. 
For instance, REIMS has been successfully employed 
to detect horse offal mixed with beef mince at concen-
trations as low as 1%–5%, showcasing its potential in 
addressing food fraud (Black et  al. 2017). In the realm 
of seafood, REIMS has been applied to binary classifica-
tion tasks for detecting fish species and catch methods, 
further illustrating its utility in combating fish fraud 
(Black et al. 2019). Historically, REIMS biomass analysis 
has primarily relied on orthogonal partial least squares 
discriminant analysis (OPLS-DA) (Balakrishnama and 
Ganapathiraju 1998; Bylesjö et al. 2006; Boccard and Rut-
ledge 2013) with principal component analysis (PCA) 
for dimensionality reduction (Abdi and Williams 2010). 
However, this PCA-OPLS-DA approach has limitations, 
particularly in its reliance on outlier thresholding for 
adulteration detection, which requires manually defined 
hyperparameters set by domain experts in chemistry. 
This work proposes automated methods with learn-
able parameters that do not require domain expertise in 
chemistry to be configured. In addition, this work pro-
poses deep learning and evolutionary computation meth-
ods from ML that outperform the traditional OPLS-DA 
approach.

2.3 � ML for REIMS
Deep learning models were selected for REIMS marine 
biomass analysis because of their capability to handle 
complex, high-dimensional data with sequential or struc-
tured dependencies, which are inherent in REIMS data. 
Transformers (Vaswani et  al. 2017; Devlin et  al. 2018), 
known for their powerful self-attention mechanisms, 
excel at weighing the importance of different features in 
sequential data, making them well-suited for identify-
ing patterns in REIMS spectra. Because REIMS data, 
similar to sequences in language, consist of ordered 
data points (mass-to-charge ratios) with varying degrees 
of importance, the attention mechanism of the trans-
former enables it to dynamically focus on critical parts 
of the spectrum for classification or prediction. Long 
short-term memory (LSTM) networks (Hochreiter and 
Schmidhuber 1997), a type of recurrent neural network, 
are also effective for REIMS data because they capture 
long-term dependencies in sequential data, which is cru-
cial for REIMS analysis, as spectral data might contain 
dependencies across distant mass-to-charge values. The 
capability of LSTM to store and retrieve information over 
long sequences enhances its performance in such tasks, 
especially when the signal patterns may not be immedi-
ately adjacent. Variational autoencoders (VAEs) (Kingma 
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and Welling 2013) provide an effective approach to han-
dling the complexity and variability of REIMS data by 
learning a compressed, latent representation of the spec-
tral information. VAEs can also reconstruct these data, 
making them ideal for different tasks such as species 
and body part classification, where they can model and 
detect small anomalies or deviations in the spectral data. 
Kolmogorov-Arnold networks (KAN) (Liu et  al. 2024) 
are highly efficient at approximating complex functions, 
which is essential in REIMS data analysis, where subtle 
differences in spectra can indicate different classes of 
species and body parts. The capability of KAN to improve 
function approximation makes it especially powerful for 
handling nonlinear patterns in mass spectrometry data, 
which traditional models may struggle to capture. Con-
volutional neural networks (CNN) (LeCun 1989; LeCun 
et  al. 1989a, 1998b), although primarily used in image 
processing, are highly effective for REIMS data because of 
the spatial connectivity in mass spectra. Similar to neigh-
boring pixels in images that share spatial relationships, 
neighboring mass-to-charge ratios in REIMS data also 
exhibit dependencies. CNN can exploit this structure to 
identify patterns in one-dimensional (1D) data, treating 
mass spectra similarly to 1D images. Finally, Mamba (Gu 
and Dao 2023), a state-space model, provides an efficient 
alternative to transformers for sequential data process-
ing. Mamba is designed for high-performance handling 
of complex time series data, making it an excellent fit for 
REIMS analysis, where computational efficiency and the 
capability to model sequential dependencies are essential 
for automated or large-scale biomass analysis.

3 � Methods
With the background established, this discusses the heart 
of our analytical approach, i.e., the classification methods 
that extract meaningful insights from the REIMS spectra.

3.1 � Deep learning and evolutionary computation
The intricate nature and high dimensionality of REIMS 
data demand advanced models capable of manag-
ing sequential relationships and complex spectral fea-
tures. We explore various architectures tailored to these 
demands. Transformers (Vaswani et al. 2017; Devlin et al. 
2018) utilize self-attention mechanisms to prioritize dif-
ferent mass-to-charge ratios within the spectra, akin to 
their effectiveness in processing sequential data for lan-
guage tasks, which makes them adept at pinpointing key 
regions in REIMS spectra for classification purposes. 
LSTM networks (Hochreiter and Schmidhuber 1997) 
are proficient at capturing extended dependencies across 
mass-to-charge values, which is vital for identifying intri-
cate spectral patterns that may extend over broad data 
ranges. Their capacity to retain and leverage information 

across long sequences is essential for detecting faint con-
tamination signals. VAEs (Kingma and Welling 2013) 
generate compact representations of REIMS spectra, 
proving useful for spotting anomalies and cross-species 
contamination by modeling and reconstructing intricate 
spectral distributions. We also investigate KAN (Liu et al. 
2024), which can approximate complex functions in spec-
tral data that could reveal species distinctions or contam-
ination levels. CNN (LeCun et al. 1998) can explore local 
dependencies within the spectra, treating them as 1D 
signals with significant neighboring connections. Finally, 
the Mamba architecture (Gu and Dao 2023) provides an 
efficient state-space method for processing sequential 
REIMS data, striking a balance between computational 
efficiency and modeling power, which is critical for real-
time analysis.

Genetic programming (Koza 1994) is an evolution-
ary computation method that solves a given problem by 
iteratively evolving a population of solutions, often rep-
resented by trees. Genetic programming has been used 
for feature construction (Tran et  al. 2016, 2019), which 
can potentially enhance mass spectrometry data classifi-
cation by automatically generating and evolving complex 
features from raw spectral data; thus, the constructed 
high-level features can better capture intricate patterns 
and relationships that simpler methods or original fea-
tures might miss. This approach can improve model 
performance by tailoring features to the specific char-
acteristics of mass spectrometry datasets, such as peak 
intensities and mass-to-charge ratios, leading to more 
accurate identification of compounds or contaminants.

3.2 � Transformer
3.2.1 � Architecture
The transformer model, originally proposed in the semi-
nal paper by Vaswani et al. (2017), revolutionized natural 
language processing and other tasks involving sequential 
data by relying entirely on self-attention mechanisms 
instead of recurrent or convolutional layers. Our trans-
former model consists of an encoder-only structure, in 
which encoders are stacked as layers. Each encoder layer 
comprises multi-head self-attention and position-wise 
feed-forward layers. We implement a transformer with-
out positional embeddings (Wang et al. 2024).

In the architecture used in this work (Fig.  1), the 
encoder blocks are equipped with residual connections 
(He et al. 2016), allowing gradients to flow efficiently dur-
ing backpropagation. These residual connections act as 
‘gradient superhighways’, enabling deeper models without 
the risk of vanishing or exploding gradients, thus allow-
ing better training stability.

A notable aspect of the transformer architecture used 
in this work is the choice of pre-norm layer normalization 
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(Ba et al. 2016; Xiong et al. 2020), where layer normaliza-
tion is applied before the multi-head self-attention and 
position-wise feed-forward layers. This approach con-
trasts with post-norm layer normalization (used after the 
attention block), as it stabilizes training and improves the 
convergence of deep transformers by ensuring more con-
sistent gradients across layers. By normalizing before the 
main components of each layer, the pre-norm structure 
helps maintain better gradient flow across the network, 
contributing to more effective training of the encoder 
layers.

3.2.2 � Progressive masking
Figure  2 illustrates the concept of progressive masking 
in pretraining transformer models. At the bottom right, 
we see the original mass spectra. On the top left, we see 

the first mask, which applies a mask to all spectra except 
the first one. From that, we see masks that slowly shrink 
down until we reach the original spectra. These patterns 
illustrate how the masking process evolved, starting with 
masking just one spectrum and progressively unmasking 
more spectra in the sample. Mask 1 shows only the first 
spectra, with the rest masked. Mask 2 reveals two spec-
tra, masking the remainder. Mask 3 unmasks one more 
spectrum, showing three spectra. The final mask shows 
all of the spectra except the final one. This progressive 
masking technique creates multiple training examples 
from a single spectrum, effectively increasing the amount 
and diversity of training data for the transformer model. 
In this work, we apply left-to-right progressive masking 
to REIMS data. Instead of sentences in natural language 
processing, we are masking mass spectra, and pretraining 
has the model predict the masked spectra, which amor-
tized the limited number of training samples by creating 
2080 masked spectra per instance to train from, resulting 
in a training set of 2080 features × 72 samples = 149760 
instances.

Fig. 1  Transformer architecture

Fig. 2  Masked language modeling, where m/z stands 
for the mass-to-charge ratio
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3.2.3 � Pretrained transformers
Pretraining is an extension of transformers that enables 
them to be pretrained on a general task, and transfer the 
pretrained weights to a transformer model to be fine-
tuned on a downstream task. This study adopts unsuper-
vised pretraining inspired by BERT (Devlin et  al. 2018) 
to improve the performance of transformer models on 
mass spectrometry tasks. Unsupervised pretraining has 
significant benefits, particularly for models working with 
limited labeled data. By training on large-scale, unla-
beled datasets, the model learns general patterns that 
capture the underlying structure of the data, resulting 
in useful embeddings that can be fine-tuned for specific 
downstream tasks with small-scale, labeled datasets. This 
approach mitigates the need for extensive labeled data 
while still providing high-quality results.

This approach is an adaptation of the masked language 
modeling (MLM) task used in BERT to handle mass spec-
trometry data. In MLM, tokens in a sentence are progres-
sively masked, and the model is trained to predict these 
masked tokens. Analogously, in masked spectra modeling 
(MSM), mass-to-charge ratios in spectra are progres-
sively masked, and the model learns to predict the miss-
ing values, which is framed as a regression task, where 
the loss function is the mean squared error. By learning to 
predict missing mass-to-charge ratios, the model devel-
ops a robust understanding of the relationships between 
features in the spectra, making it well-suited for down-
stream tasks. We use left-to-right progressive masking to 
amortize the limited number of training instances.

By pretraining on this task, the transformer network 
learns valuable domain-specific representations. When 
fine-tuned on small-scale, labeled datasets, the model 
can leverage these pretrained weights, resulting in 
improved accuracy, faster convergence, and better gen-
eralization. This approach is particularly advantageous 
in some fields, such as mass spectrometry, where labeled 
data are limited, but large amounts of unlabeled data are 
readily available.

4 � Experimental setup
Having outlined our various ML approaches for analyz-
ing REIMS data, we now describe the experimental setup 
used to evaluate these methods, including the benchmark 
technique, datasets, and parameter settings used in our 
evaluation.

4.1 � Comparison methods
This study evaluates a diverse range of ML techniques to 
classify the REIMS spectra: 

(1)	 Benchmark method: Orthogonal partial least 
squares disrciminant analysis (OPLS-DA) (Bylesjö 

et al. 2006). OPLS-DA is a supervised multivariate 
analysis technique that separates predictive from 
non-predictive variation in complex datasets to 
improve model interpretability and identify vari-
ables that drive class separation.

(2)	 Traditional machine learning methods: Random 
forest (RF) (Ho 1995), K-nearest neighbors (KNN) 
(Fix and Hodges 1989), decision trees (DT) (Brei-
man 2017), naive Bayes (NB) (Hand and Yu 2001), 
logistic regression (LR) (Kleinbaum et  al. 2002), 
support vector machines (SVM) (Cortes and Vap-
nik 1995), and linear discriminant analysis (LDA) 
(Balakrishnama and Ganapathiraju 1998).

(3)	 Ensemble method (Hansen and Salamon 1990): 
A combination of the aforementioned traditional 
methods. A hard-voting ensemble classifier com-
bines multiple base classifiers by having each classi-
fier make a prediction and taking the most common 
predicted class label as the final output through 
majority voting.

(4)	 Deep neural networks: Transformer (Vaswani 
et  al. 2017; Devlin et  al. 2018), LSTM (Hochreiter 
and Schmidhuber 1997), VAE (Kingma and Well-
ing 2013), CNN (LeCun 1989; LeCun et al. 1989a,b 
1998), KAN (Liu et al. 2024), and Mamba (Gu and 
Dao 2023).

(5)	 Genetic programming: Multiple class independent 
feature construction (MCIFC) (Tran et  al. 2016, 
2019) algorithm represents candidate solutions 
as multiple trees, with one subtree per class. This 
structure serves feature construction and classifica-
tion purposes, employing a winner-takes-all strat-
egy for class prediction.

4.2 � Benchmark technique
To evaluate the performance of the proposed methods, 
OPLS-DA (Bylesjö et al. 2006) is used as a benchmark to 
compare new approaches with the existing methods for 
REIMS analysis. OPLS-DA is the standard technique for 
biomass analysis using REIMS, as supported by promi-
nent use in the literature (Balog et  al. 2010; Jha 2015; 
Black et al. 2017, 2019). Therefore, we use OPLS-DA as 
a benchmark for comparative performance, showing the 
contrast between traditional and new approaches for bio-
mass analysis with REIMS. OPLS-DA is considered an 
ML technique, specifically a supervised dimensionality 
reduction and classification method. OPLS-DA falls into 
the category of linear supervised ML algorithms, similar 
to partial least squares discriminant analysis and linear 
discriminant analysis. However, the primary strength 
of OPLS-DA lies in its capability to separate systematic 
variation into predictive and orthogonal (non-predic-
tive) components, which makes it particularly useful for 
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classification and biomarker identification in some fields, 
such as metabolomics and chemometrics.

4.3 � Experimental settings
Each method is evaluated, and the average is given over 
30 independent runs. Stratified k-fold cross-validation, 
with k = 5 for fish species and k = 3 for body parts, is 
particularly beneficial for evaluating model performance 
on datasets with limited training samples and imbalanced 
classes. This method ensures that each fold maintains a 
class distribution similar to the entire dataset, which 
helps the model learn effectively from the majority and 
minority classes. By doing so, this method reduces the 
variance of performance estimates, leading to more sta-
ble and reliable metrics. In addition, this method maxi-
mizes the use of available data, allowing each sample to 
contribute to training and validation, which is crucial 
for small datasets. With threefold and fivefold cross-
validations, the model is tested across various scenarios, 
improving its generalization to unseen data and provid-
ing a comprehensive evaluation of its performance.

4.4 � Datasets
This study utilizes datasets provided by New Zealand 
Plant and Food Research as part of Cyber-Marine (Plant 
and Food Research 2020). REIMS can be used to opti-
mize the value obtained from seafood resources. The 
dataset consists of mass spectrometry samples collected 
using REIMS, where an electrosurgical knife is used to 
create an aerosol from the samples. This aerosol is then 
directed into a mass spectrometer, where ionization 
occurs, enabling mass-to-charge ratio analysis. Each 
sample undergoes multiple incisions lasting 3–5 s, pro-
viding detailed chemometric data in the mass range of 
m/z 77.04–999.32. Figure  3 shows the two wild-caught 
fish species, i.e., hoki and mackerel, that are the subject 
of this study. These are two important fish species in New 
Zealand’s seafood industry, especially given that New 
Zealand’s largest fishery is hoki (Ministry for Primary 
Industries 2024).

For illustrative purposes, the different fish body parts, 
which are shared across both species of fish, are shown 
in Fig. 4.

The dataset used consists of REIMS spectra collected 
from two fish species and seven body parts. In particular, 
we will have two different datasets corresponding to two 
different tasks: 

(1)	 Species classification: The task is to distinguish 
between two species of fish (i.e., hoki and mackerel) 
based on 2080 features derived from REIMS analy-
sis. This classification is crucial for food authen-
tication and quality control in the seafood indus-
try, helping prevent species substitution fraud and 
ensure accurate product labeling. We focus on pure 
(i.e., non-contaminated/unmixed) samples to estab-
lish a reliable baseline for species identification. 
The dataset contains 106 samples, with a relatively 
balanced distribution of 44.44% hoki and 55.56% 

Fig. 3  Mackerel (a) and hoki (b) fish species

Fig. 4  Fish body parts
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mackerel. These proportions reflect the natural 
availability of samples while maintaining sufficient 
representation for both species to train a robust 
classifier.

(2)	 Body parts classification: This multi-class classifica-
tion task aims to identify seven distinct fish parts 
(i.e., fillets, head, livers, skins, gonads, guts, and 
frames) using REIMS data. The classification sup-
ports process automation by enabling automated 
sorting and processing in seafood production lines 
while helping maximize the value of each fish part, 
such as using fillets for premium products and 
frames for fish meal. Furthermore, precise classi-
fication ensures proper tracking and documenta-
tion of different fish components throughout the 
supply chain. The dataset contains 33 samples with 
a distribution of 16.66% each for fillets, heads, liv-
ers, skins, and guts and 8.33% each for gonads and 
frames. The relatively small sample size per class is 
attributed to the limited number of annotated sam-
ples for each class of body part.

The REIMS spectra were normalized to be within 
x ∈ [0, 1] , fitted to the training set of each fold. Let 
X = {x1, x2, · · · , xn} be a dataset containing n elements. 
The normalized value x′i for each element xi is obtained 
as follows:

where xmin is the minimum value in the dataset X, xmax is 
the maximum value in the dataset X.

4.5 � Parameter settings
Experiments use the default settings from sklearn 
(Pedregosa et  al. 2011), except for SVM with a linear 
kernel, and LR set to 2000 for the maximum number 
of iterations. The ensemble voting classifier combines 
all of the traditional ML methods into one model. The 
ensemble uses hard voting, i.e., the predicted class 
labels for majority rule voting.

The deep learning models all use the following 
parameters: The AdamW optimizer (Loshchilov and 
Hutter 2017) decouples weight decay from the learn-
ing rate, an improvement over the popular Adam opti-
mizer (Kingma and Ba 2014). Dropout (Srivastava 
et al. 2014) turns off neurons at random during train-
ing to efficiently approximate a bagged ensemble of 
subneural networks. Label smoothing (Szegedy et  al. 
2016) softens class labels by combining the one-hot 

(1)x′i =
xi − xmin

xmax − xmin

,

encodings with a uniform distribution, adding noise to 
the class labels. The deep learning networks use Gauss-
ian error linear units (Hendrycks and Gimpel 2016) as 
the activation functions. Early stopping (Morgan and 
Bourlard 1989) is one of the most common forms of 
regularization that saves the model parameters when 
the validation loss is improved and tunes the hyperpa-
rameter of epochs (Goodfellow et al. 2016). To ensure 
a fair comparison, each model has the same hyperpa-
rameters, i.e., a hidden dimension of 128, trained for 
100 epochs, a learning rate of 1e-5, a batch size of 64, 4 
layers (where applicable), dropout of p = 0.2 , and label 
smoothing of 0.1.

Table  1 presents the configuration of hyperparam-
eters for the transformer–these settings were derived 
through trial and error via experimentation.

We follow the original paper for the parameter set-
tings for MCIFC (Tran et al. 2019). We use a construc-
tion ratio of 1, allowing for one tree per class.

5 � Results and discussions
Having outlined our classification strategies, this sec-
tion now presents and interprets the outcomes of 
applying these various ML techniques to the REIMS 
datasets. Tables 2 and 3 list the results of the classifiers 
on the training and test sets, with the best performing 
model on the test set rendered in bold, and the sec-
ond best are rendered in italics. Notably, the method 
‘pretrained’ indicates the transformer with progres-
sive left-to-right masked pretraining. The transformer 
was pretrained on the training data of each fold during 
stratified k-fold cross-validation.

Table 1  Transformer parameter settings

Parameter Setting

Learning rate 1e-5

Epochs 100

Dropout 0.2

Label smoothing 0.1

Early stopping patience 5

Optimiser AdamW

Loss: MSM MSE

Loss: speciation and part CCE

Input dimensions 2080

Hidden dimensions 128

Output dimensions: MSM 2080

Output dimensions: speciation 2

Output dimensions: part 7

Number of layers 4

Number of heads 4
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5.1 � Fish species classification
For the fish species classification task, the best perform-
ing model was the pretrained transformer (99.62%). This 
model excels in capturing the intricate patterns in the 
REIMS data, which provide distinct signatures for differ-
ent fish species. The high performance of the DT model 
(99.17%) shows that even traditional ML methods are 
highly effective in this domain. Tree-based models, such 

as DT and RF, work well because they can split the data 
based on highly discriminative features, capturing non-
linear relationships effectively. For a DT, although indi-
vidual splits are linear (axis-parallel), their combination 
creates non-linear decision boundaries.

The consistently high test accuracy across all models 
indicates that the REIMS dataset for fish species contains 
strong, distinguishable signals that can be effectively 
exploited by various ML techniques, making the classi-
fication task easier for deep learning models and tradi-
tional methods. The models excel at this task because the 
REIMS data provide clear, consistent, and high-dimen-
sional representations of species differences, which can 
be leveraged by the deep architectures for feature extrac-
tion and the traditional methods for decision-making.

All of the deep learning models consistently outper-
form the traditional OPLS-DA method–with the pre-
trained transformer achieving 96.39% test accuracy–in 
the literature for REIMS analysis. The research field of 
REIMS analysis should consider deep learning meth-
ods for other applications, as they exhibit superior 
performance.

5.2 � Fish body part
The transformer without pretraining performed the 
best in the fish body parts classification task, achieving 
a test accuracy of 84.06%. These models are well-suited 
for this task because they can handle complex and mul-
tidimensional input data, such as REIMS, capturing the 
subtle differences between body parts through advanced 
feature extraction and context awareness. LSTMs, with 
their capability to capture sequential dependencies, also 
perform well (82.11%), indicating some temporal or posi-
tional dependencies in the ionization patterns that relate 
to specific body parts.

However, traditional ML methods show lower perfor-
mance in the fish body part task, compared to the fish 
species task. This finding indicates that the fish body 
parts classification task is inherently more complex 
because of less distinct signal differences between body 
parts, making it harder for simpler models to differenti-
ate between classes. This increased difficulty arises from 
fewer training instances in the fish body parts dataset or 
overlapping chemical compositions between different 
parts of the same species. Previous work (Wood et  al. 
2022) on fish species and body part classification with gas 
chromatography data illustrated the increased difficulty 
of body part classification.

Again, all of the deep learning methods–with the trans-
former achieving the best test accuracy of 84.06%–out-
perform the OPLS-DA method (51.17%). For the second 
task, deep learning methods have been proven to be 
superior to the traditional approach in the literature.

Table 2  Classification results of fish species identification

Method Train (%) Test (%)

OPLS-DA 98.91 ± 0.74 96.39 ± 4.44

KNN 95.76 ± 0 79.37 ± 0

DT 100.00 ± 0 99.17 ± 0

LR 100.00 ± 0 85.21 ± 0

LDA 98.54 ± 0 92.29 ± 0

NB 89.17 ± 0 66.67 ± 0

RF 100.00 ± 0 90.05 ± 0

SVM 100.00 ± 0 84.58 ± 0

Ensemble 100.00 ± 0 87.84 ± 0.40

Transformer 100.00 ± 0 99.17 ± 1.67

Pretrained 100.00 ± 0 99.62 ± 1.15
LSTM 100.00 ± 0 98.84 ± 1.76

VAE 100.00 ± 0 98.64 ± 1.94

KAN 100.00 ± 0 97.41 ± 2.45

CNN 100.00 ± 0 96.87 ± 3.24

Mamba 100.00 ± 0 98.27 ± 2.14

MCIFC 100.00 ± 0 97.89 ± 2.59

Table 3  Classification results of fish body part identification

Method Train (%) Test (%)

OPLS-DA 80.11 ± 2.86 51.17 ± 22.16

KNN 43.06 ± 0 39.17 ± 0

DT 100.00 ± 0 35.50 ± 4.35

LR 100.00 ± 0 59.58 ± 0

LDA 74.31 ± 0 52.92 ± 0

NB 100.00 ± 0 48.33 ± 0

RF 100.00 ± 0 61.67 ± 0

SVM 100.00 ± 0 52.33 ± 2.57

Ensemble 100.00 ± 0 52.33 ± 2.57

Transformer 100.00 ± 0 84.06 ± 6.42
Pretrained 100.00 ± 0 83.94 ± 7.12

LSTM 100.00 ± 0 82.11 ± 9.15

VAE 85.43 ± 6.28 74.81 ± 13.84

KAN 100.00 ± 0 73.06 ± 9.58

CNN 100.00 ± 0 70.41 ± 13.75

Mamba 100.00 ± 0 80.67 ± 8.73

MCIFC 97.95 ± 1.61 55.45 ± 19.19
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5.3 � Summary
Across all tasks, the deep learning methods exhibited 
superior performance to the OPLS-DA method that 
dominates the literature (Balog et  al. 2010; Jha 2015; 
Black et al. 2017, 2019) on REIMS analysis. Future work 
in the field for other applications of REIMS analysis 
should consider deep learning methods as a viable alter-
native. The varying performance of different models 
across tasks highlights the importance of selecting the 
appropriate algorithms for specific analytical challenges 
in marine biomass analysis. Although the transformer 
model consistently excelled, simpler models, such as 
DT, exhibited competitive performance in certain tasks, 
with potential advantages in terms of interpretability and 
computational efficiency. The challenges faced in body 
part classification point to areas where further research 
is needed, which might include exploring more advanced 
feature extraction techniques, increasing the size and 
diversity of the training dataset, or developing specialized 
model architectures tailored to these specific tasks. Over-
all, our results indicate the potential of combining REIMS 
with ML for automated and accurate marine biomass 
analysis while also highlighting areas for future improve-
ment and research.

6 � Further analysis on feature importance
Although the performance of our simple and pretrained 
transformers is promising, understanding how they 
arrive at their predictions is crucial for building trust and 
gaining insights. The important features driving the deci-
sions made by black box models need to be identified so 
that these models can be understood, trusted, and veri-
fied by domain experts in chemistry and fish processing. 
To address this challenge, we employ LIME, a technique 
used to explain predictions made by complex black box 
ML models (Ribeiro et  al. 2016). We analyze the top 5 
most important features of the best performing models 
that have been identified by LIME. LIME approximates 
a complex model with a simpler and interpretable model 
(e.g., linear regression) for a specific instance in a local 
area to be understood. LIME creates and evaluates many 
altered versions through perturbations of an instance in 
the input data to see how those perturbations change the 
prediction. Through perturbations and their observed 
changes to the prediction, this information is used to 
generate a local explanation that highlights the features 
that influenced the prediction. LIME explanations, or 
feature importance charts, are used to explain the pre-
dictions of ML models by identifying the features (in this 
case, specific mass-to-charge ratios) that are most influ-
ential in a particular prediction. In these LIME charts: 

(1)	 Green bars represent the features (i.e., mass-to-
charge ratios) that contribute positively to the pre-
dicted class. In other words, the presence or higher 
intensity of these features increases the likelihood 
of the sample being classified as the predicted class.

(2)	 Red bars represent the features that contribute 
negatively to the predicted class. In other words, 
the presence or higher intensity of these features 
decreases the likelihood of the sample being classi-
fied as the predicted class.

(3)	 The x-axis represents the length of each bar that 
indicates the magnitude of the importance of the 
feature. Longer bars (whether green or red) signify 
that the corresponding feature strongly influences 
the prediction of the model. Thus, the x-axis repre-
sents the importance of the feature.

(4)	 The y-axis represents the mass-to-charge (m/z) 
ratios and their intensity thresholds from the mass 
spectrometry data. Thus, the y-axis represents the 
important features.

The 1D gradient-weighted class activation map-
ping (Grad-CAM) (Selvaraju et  al. 2017) implementa-
tion visualizes the features in the mass spectrometry 
data that most influence the classification decisions of 
a transformer model. For correctly classified samples, 
Grad-CAM generates an ‘average correct Grad-CAM’ 
by calculating the mean importance across all correctly 
predicted samples. This visualization shows the mass 
spectrometry peaks (represented by feature indices) 
that consistently contribute to accurate classifications. 
The implementation works by capturing gradients flow-
ing through the final attention layer of the model during 
backpropagation, weighting the activation of each feature 
by its gradient, and normalizing the results. The resulting 
graph highlights regions in the mass spectra that are most 
discriminative for classification, providing interpretabil-
ity for what would otherwise be a black box model. This 
insight is particularly valuable for mass spectrometry 
applications, where understanding the mass-to-charge 
ratios that drive classification can provide biochemical 
insights into the underlying samples.

6.1 � Fish species classification
The pretrained transformer achieves the best classifi-
cation accuracy (99.62%) for fish species classification. 
Figure 5 shows the LIME chart for the pretrained trans-
former for the mackerel fish species. The most important 
feature, denoted by the strongest green bar, is detected 
when the mass-to-charge ratio (m/z) of 794.0990 is 
within the normalized intensity range of 0.28 < y ≤ 0.47 , 
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indicating that large amounts of this molecule are present 
in the mackerel fish species.

Figure  6 shows the LIME chart for the pretrained 
transformer for the hoki fish species. The most impor-
tant feature, denoted by the strongest red bar, is when 
the mass-to-charge ratio (m/z) of 229.0710 is within the 
normalized intensity range of 0.26 < y ≤ 0.36 , indicat-
ing that large amounts of this molecule are present in a 
sample does not belong to the hoki fish species.

Figure  7 illustrates the DT with near-perfect accu-
racy, showing how a simple model with two splits, can 
classify fish species, giving both a highly accurate and 
interpretable model. The figure shows the two mass-to-
charge ratios and their intensity thresholds on which 
they based their decision boundaries.

Figure 8 shows the average correct Grad-CAM for the 
body part classification task, highlighting the important 
features in the mass spectrograph that contribute to 
correct classifications, averaged across all of the classes. 
From the figure, we identify important features with 

high discriminative capability in the feature index range 
of 200–800 for the mass-to-charge ratios, with coeffi-
cients greater than 0.5.

6.2 � Fish body part
The transformer performs the best (83.94%) on the fish 
parts dataset. Figure  9 shows the LIME chart for the 
transformer for the fish part classification of fish heads. 
The most important feature, denoted by the strong-
est green bar, is detected when the mass-to-charge ratio 
(m/z) of 256.1089 is within the normalized intensity 
range of 0.26 < y ≤ 0.35 , indicating that large amounts of 
this molecule are likely present in fish heads.

Figure  10 shows the LIME chart for the transformer 
for the fish body part classification of fish fillets. The 
most important feature, denoted by the strongest red 
bar, is detected when the mass-to-charge ratio (m/z) of 
722.0810 is greater than the normalized intensity of 0.41, 
indicating that large amounts of this molecule are not 
expected in fish fillets.

Fig. 5  LIME explanation for the pretrained transformer model using 
in mackerel species classification

Fig. 6  LIME explanation for the pretrained transformer model used 
in hoki species classification

Fig. 7  Decision tree for fish species

Fig. 8  Grad-CAM for the pretrained transformer model in fish species 
classification
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Figure  11 shows the LIME chart for the transformer 
for the fish body part classification of fish livers. The 
most important feature, denoted by the strongest red 
bar, is detected when the mass-to-charge ratio (m/z) of 
849.2039 is within the normalized intensity range of 
0.27 < y ≤ 0.38 , indicating that large amounts of this 
molecule are not likely to be found in fish liver.

Figure  12 shows the LIME chart for the transformer 
for the fish body part classification of fish skins. The 
most important feature, denoted by the strongest red 
bar, is detected when the mass-to-charge ratio (m/z) of 
191.0813 is greater than the normalized intensity of 0.32, 
indicating that large amounts of this molecule are not 
usually found in fish skins.

Figure  13 shows the LIME chart for the transformer 
for the fish body part classification of fish guts. The most 
important feature, denoted by the strongest red bar, is 
detected when the mass-to-charge ratio (m/z) 675.1786 
is less than or equal to the normalized intensity of 0.11, 
indicating that small amounts of this molecule are not 
usually found in fish guts.

Figure  14 shows the LIME chart for the transformer 
for the fish body part classification of fish frames. The 
most important feature, denoted by the strongest green 
bar, is detected when the mass-to-charge ratio (m/z) 
of 533.161 is within the normalized intensity range of 

Fig. 9  LIME explanation for the transformer model used in fish head 
classification

Fig. 10  LIME explanation for the transformer model used in fish 
fillets classification

Fig. 11  LIME explanation for the transformer model used in fish livers 
classification

Fig. 12  LIME explanation for the transformer model used in fish skins 
classification

Fig. 13  LIME explanation for the transformer model using in fish guts 
classification
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0.25 < y ≤ 0.24 , indicating that average to large amounts 
of this chemical are not expected to be found in fish 
frames.

Figure 15 shows the LIME chart for the transformer for 
the fish body part classification of fish gonads. The most 
important feature, denoted by the strongest red bar, is 
detected when the mass-to-charge ratio (m/z) of 93.0882 
is less than or equal to the normalized intensity threshold 
of 0.09 < y ≤ 0.18 . Biochemically, this finding indicates 
that the m/z of 93.0882 might correspond to a compound 
not found in fish gonads.

Figure 16 shows the average correct Grad-CAM for the 
body part classification task, highlighting the key features 
in the mass spectrograph that contribute to accurate clas-
sifications, averaged across all of the classes. From the 
figure, we identify one important feature in the feature 
index range of 0–100, another in the feature index range 
of 500–600, and four more in the feature index range of 
1000–1750 for the mass-to-charge ratios, with coeffi-
cients greater than 0.8. This Grad-CAM identifies more 
important features, with a higher average importance, for 
fish body parts than for fish species.

7 � Conclusions and future work
The results of these classification tasks indicate that 
deep learning models, particularly transformer, are 
well-suited for handling the complex, high-dimensional 
data generated by REIMS data. These models consist-
ently outperform traditional ML methods, especially for 
tasks involving subtle or overlapping signal differences, 
such as body part detection. The pretrained transformer 
outperforms the regular transformer on fish species 
classification, indicating that pretraining captures mean-
ingful embeddings that improve the performance of 
downstream classification tasks. Although traditional 
models, such as DT, show excellent performance in sim-
pler tasks, such as fish species classification, their perfor-
mance decreased significantly in more challenging tasks, 
highlighting the need for advanced feature extraction and 
representation learning that deep learning models pro-
vide. The overall strong performance across the board 
indicates that REIMS data provide rich, discriminative 
information, particularly for fish species classification. 
However, body part identification requires more sophis-
ticated modeling approaches, where deep learning excels 
because of its capability to capture complex patterns and 
subtle signal deviations.

The application of explainable AI techniques, i.e., LIME 
and Grad-CAM, provided valuable insights into the deci-
sion-making processes of our models. These explanations 
revealed specific mass-to-charge ratios that strongly 
influence classifications, enhancing our understanding 
of the biochemical markers associated with different fish 
species and body parts. For instance, the LIME analysis of 
fish speciation highlighted distinct spectral regions that 
differentiate mackerel from hoki. The Grad-CAM analy-
sis generated class activation maps that quantitatively 
highlighted the ion peaks in the m/z range at feature 
index 200–800 for fish species, which exhibited sig-
nificance coefficients > 0.5 across all correctly classified 

Fig. 14  LIME explanation for the transformer model used in fish 
frames classification

Fig. 15  LIME explanation for the transformer model used in fish 
gonads classification

Fig. 16  Grad-Cam for the transformer model used in fish body part 
classification
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samples, confirming these spectral features as statistically 
significant biomarkers rather than artifacts of the classifi-
cation algorithm.

This interpretability not only increases confidence 
in the predictions of the model but also opens up pos-
sibilities for new scientific insights into the biochemi-
cal composition of marine biomass, demonstrating that 
our approach can provide accurate classifications and 
meaningful, chemically relevant explanations for those 
classifications.

Overall, this research opens up new possibilities for 
automated, accurate, and interpretable analysis in marine 
biomass composition studies, with significant implica-
tions for quality control, product optimization, and food 
safety in marine-based industries.

Although our study has yielded promising results, it 
also opens up numerous avenues for further research 
and development. These are potential directions for 
expanding and refining our approach. These directions 
for future work include (1) developing a system for real-
time REIMS data acquisition and analysis, allowing for 
immediate classification results in industrial settings, 
and (2) working with regulatory bodies to ensure that the 
developed methods meet or exceed current standards for 
marine biomass analysis and food safety monitoring.
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