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Abstract

based industries.

Marine biomass composition analysis traditionally requires time-consuming processes and domain expertise.

This study demonstrates the effectiveness of rapid evaporative ionization mass spectrometry (REIMS) combined
with advanced machine learning (ML) techniques for accurate marine biomass composition determination. Using
fish species and body parts as model systems representing diverse biochemical profiles, we investigate various ML
methods, including unsupervised pretraining strategies for transformers. The deep learning approaches consistently
outperformed traditional machine learning across all tasks. For fish species classification, the pretrained transformer
achieved 99.62% accuracy, and for fish body parts classification, the transformer achieved 84.06% accuracy. We further
explored the explainability of the best-performing and predominantly black box models using local interpretable
model-agnostic explanations and gradient-weighted class activation mapping to identify the important features
driving the decisions behind each of the best performing classifiers. REIMS analysis with ML can be an accurate

and potentially explainable technique for automated marine biomass composition analysis. Thus, REIMS analysis
with ML has potential applications in quality control, product optimization, and food safety monitoring in marine-
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1 Introduction

The fish processing industry forms a critical component
of the global seafood supply chain, transforming raw
marine biomass into consumer products through multi-
ple stages. This process typically involves species sorting,
cleaning, filleting, packaging, and quality control at vari-
ous checkpoints. Each stage presents unique challenges
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that can benefit from artificial intelligence (AI) and
machine learning (ML) solutions. The traditional fish
processing workflow begins with the arrival of the catch,
in which workers must rapidly sort different species—a
task prone to human error, particularly with similar-look-
ing fish. Then, the catch moves through the cleaning and
filleting stations, where different body parts are separated
for various products—from premium fillets to processed
fish meal. Quality control occurs throughout, checking
for freshness, proper handling, and accurate labeling.
Finally, products are packaged and prepared for distri-
bution. Several critical challenges that exist within this
workflow are as follows:
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(1) Quality control: Mislabeling and fraud remain per-
sistent issues in the seafood industry (Black et al.
2017), with economic and food safety implications.
Studies have shown significant rates of species sub-
stitution in various markets (Pardo et al. 2016).

(2) Product optimization: Different fish species and
fish body parts have varying commercial values and
uses, with some parts commanding premium prices
in specific markets. The accurate classification of
these parts ensures optimal resource utilization and
maximizes economic value across the supply chain
(Ghaly et al. 2013).

(3) Safety monitoring: The accurate tracking of pro-
cessed species volumes is essential for regulatory
compliance and stock management (Pauly and Zel-
ler 2016).

These areas provide opportunities where automated
analysis can significantly improve fish processing. Spe-
cifically, we explore the application of ML to rapid evapo-
rative ionization mass spectrometry (REIMS) data across
two critical classification tasks, i.e., fish species identifi-
cation and body part classification. REIMS technology,
combined with ML algorithms, aims to provide a promis-
ing solution for real-time, accurate analysis during pro-
cessing operations. Our focus on these specific tasks is
driven by their direct impacts on industry pain points:

(1) Species classification helps combat fraud and
ensures proper resource management. (2) Body part
identification helps optimize processing efficiency and
product value. (3) Accurate species counting supports
regulatory compliance and sustainability efforts.

This study demonstrates how ML techniques applied to
REIMS data can enhance the efficiency and accuracy of
these critical fish processing operations while supporting
broader goals of sustainability and food security in the
seafood industry.

REIMS marine biomass analysis faces several chal-
lenges, such as the time-consuming manual ‘offline’
analysis, costly domain expertise required, high dimen-
sionality (Koppen 2000), few training samples, and the
need for automated ‘online’ inference. However, ‘online’
inference in the domain of chemistry and fish process-
ing, should not be confused with ‘online’ learning from
ML. The rapid nature of REIMS necessitates equally
rapid inference of its results, as traditional analytical
chemistry techniques, which take several hours, are
slow (Jha 2015). Furthermore, current analytical meth-
ods for REIMS data often require domain expertise in
chemistry and fish processing, which does not match
the speed of REIMS. Traditionally, samples would be
sent away for ‘offline’ analysis by domain experts in
chemistry. Thus, we aim to develop methods capable
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of automated inference for ‘online” analysis on the pro-
duction line of a fish processing factory. REIMS also
produces high-dimensional data, with this particular
dataset having 2080 mass-to-charge ratios as features
but with limited training instances because of the time-
consuming and expensive task of sample preparation.
In addition, industry applications require fast, accurate,
and interpretable models that can be verified and trou-
bleshooted in real-world scenarios.

To address the aforementioned challenges, this study
proposes several innovative ML approaches that provide
automated inference, eliminating the need for domain
expertise in chemistry and fish processing. To handle
the high dimensionality of REIMS data, this study uti-
lizes deep learning (Vaswani et al. 2017; Devlin et al.
2018) and evolutionary computation (Tran et al. 2016,
2019) that can address complex feature interactions in
mass spectra with limited training instances. Techniques
such as bidirectional encoder representations (BERT)
(Devlin et al. 2018) and attention mechanisms (Vaswani
et al. 2017) can capture complex, nonlinear relationships
between features in high-dimensional data. To mitigate
the limited number of training samples, we implement
the unsupervised pertaining approach, which involves
training the model on a large amount of unlabeled data
before fine-tuning it on the limited labeled dataset. The
model learns general features and patterns from the unla-
beled data, which can then be transferred to the specific
task at hand, significantly improving performance when
labeled data are scarce. Finally, we employ local interpret-
able model-agnostic explanations (LIME) (McCann and
Lowe 2012) and gradient-weighted class activation map-
ping (Grad-CAM) (Selvaraju et al. 2017) to provide inter-
pretable outputs that identify important features and
quantify their impact, making our models more accessi-
ble to domain experts in chemistry and fish processing.

The main contributions of the paper are as follows:

(1) Real-time marine biomass analysis: This study
demonstrates the use of REIMS combined with
advanced ML techniques to enable automated anal-
ysis of marine biomass, which represents a signifi-
cant improvement over traditional, time-consum-
ing methods.

(2) ML on sequential data: This study demonstrates
that deep learning approaches, particularly trans-
formers with and without progressive masking pre-
training, consistently outperform traditional ML
methods for analyzing sequential REIMS data.

(3) Feature importance: The important mass-to-charge
ratios for the best performing models are identified
to enhance domain knowledge in fish processing
and chemistry.
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2 Related works

Building upon the foundation laid in the ‘Introduc-
tion; this section delves deeper into the existing body of
research on marine biomass analysis, exploring tradi-
tional methods and recent advancements in REIMS tech-
nology, while highlighting the gaps and challenges that
our proposed approach aims to address. We also provide
the necessary background on deep learning required.

2.1 Marine biomass

Mislabeling is a significant issue in the global seafood
industry, with a meta-analysis of genomic profiling meth-
ods finding an average mislabeling rate of 30% globally
(Pardo et al. 2016). ML methods using REIMS data pro-
vide a promising solution to this problem by enabling
more accurate fish species classification. For example, in
2016, a restaurant in Melbourne was accused of serving
catfish instead of dory (Pearl 2016), highlighting the need
for better species detection techniques. REIMS tech-
nology, which works on raw and cooked biomass, can
combat fraud by ensuring species authenticity. Approxi-
mately 40% of a fish is edible fillet, whereas the remaining
60% can be repurposed into products such as fertilizers
or high-value pharmaceutical-grade omega-3 concen-
trates. Fish oil, rich in omega-3 polyunsaturated fatty
acids (Simopoulos 2011), is nutritionally essential but
increasingly scarce in Western diets (FAO 2020). REIMS-
based ML methods in fish processing also help identify
high-value parts for repurposing into valuable products,
contributing to the increasing consumer demand for
omega-3 supplements made from diverse marine bio-
mass (Panse and Phalke 2016).

2.2 REIMS
Traditional approaches for analyzing marine biomass
composition have long been the cornerstone of research
and quality control in the seafood industry. These meth-
ods include gas chromatography-mass spectrometry
(Wood et al. 2022), nuclear magnetic resonance spec-
troscopy (Bettjeman et al. 2018), and genomic profiling
(Pardo et al. 2016). Although these techniques have been
proven valuable, they often come with significant draw-
backs. These techniques are typically time-consuming,
requiring extensive sample preparation and analysis time.
In addition, they are labor-intensive, demanding skilled
technicians to operate complex equipment and interpret
results. Most importantly, these methods necessitate sub-
stantial domain expertise, limiting their accessibility and
scalability in real-world applications. These limitations
have spurred the search for rapid techniques for marine
biomass analysis in fish processing.

In recent years, REIMS has emerged as a promising
technique for the rapid and accurate analysis of biological
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samples, addressing many of the limitations of traditional
methods. Since its introduction in the original paper
by Balog et al. (2010), REIMS has demonstrated its ver-
satility and effectiveness across various applications.
For instance, REIMS has been successfully employed
to detect horse offal mixed with beef mince at concen-
trations as low as 1%-5%, showcasing its potential in
addressing food fraud (Black et al. 2017). In the realm
of seafood, REIMS has been applied to binary classifica-
tion tasks for detecting fish species and catch methods,
further illustrating its utility in combating fish fraud
(Black et al. 2019). Historically, REIMS biomass analysis
has primarily relied on orthogonal partial least squares
discriminant analysis (OPLS-DA) (Balakrishnama and
Ganapathiraju 1998; Bylesjo et al. 2006; Boccard and Rut-
ledge 2013) with principal component analysis (PCA)
for dimensionality reduction (Abdi and Williams 2010).
However, this PCA-OPLS-DA approach has limitations,
particularly in its reliance on outlier thresholding for
adulteration detection, which requires manually defined
hyperparameters set by domain experts in chemistry.
This work proposes automated methods with learn-
able parameters that do not require domain expertise in
chemistry to be configured. In addition, this work pro-
poses deep learning and evolutionary computation meth-
ods from ML that outperform the traditional OPLS-DA
approach.

2.3 ML for REIMS

Deep learning models were selected for REIMS marine
biomass analysis because of their capability to handle
complex, high-dimensional data with sequential or struc-
tured dependencies, which are inherent in REIMS data.
Transformers (Vaswani et al. 2017; Devlin et al. 2018),
known for their powerful self-attention mechanisms,
excel at weighing the importance of different features in
sequential data, making them well-suited for identify-
ing patterns in REIMS spectra. Because REIMS data,
similar to sequences in language, consist of ordered
data points (mass-to-charge ratios) with varying degrees
of importance, the attention mechanism of the trans-
former enables it to dynamically focus on critical parts
of the spectrum for classification or prediction. Long
short-term memory (LSTM) networks (Hochreiter and
Schmidhuber 1997), a type of recurrent neural network,
are also effective for REIMS data because they capture
long-term dependencies in sequential data, which is cru-
cial for REIMS analysis, as spectral data might contain
dependencies across distant mass-to-charge values. The
capability of LSTM to store and retrieve information over
long sequences enhances its performance in such tasks,
especially when the signal patterns may not be immedi-
ately adjacent. Variational autoencoders (VAEs) (Kingma
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and Welling 2013) provide an effective approach to han-
dling the complexity and variability of REIMS data by
learning a compressed, latent representation of the spec-
tral information. VAEs can also reconstruct these data,
making them ideal for different tasks such as species
and body part classification, where they can model and
detect small anomalies or deviations in the spectral data.
Kolmogorov-Arnold networks (KAN) (Liu et al. 2024)
are highly efficient at approximating complex functions,
which is essential in REIMS data analysis, where subtle
differences in spectra can indicate different classes of
species and body parts. The capability of KAN to improve
function approximation makes it especially powerful for
handling nonlinear patterns in mass spectrometry data,
which traditional models may struggle to capture. Con-
volutional neural networks (CNN) (LeCun 1989; LeCun
et al. 1989a, 1998b), although primarily used in image
processing, are highly effective for REIMS data because of
the spatial connectivity in mass spectra. Similar to neigh-
boring pixels in images that share spatial relationships,
neighboring mass-to-charge ratios in REIMS data also
exhibit dependencies. CNN can exploit this structure to
identify patterns in one-dimensional (1D) data, treating
mass spectra similarly to 1D images. Finally, Mamba (Gu
and Dao 2023), a state-space model, provides an efficient
alternative to transformers for sequential data process-
ing. Mamba is designed for high-performance handling
of complex time series data, making it an excellent fit for
REIMS analysis, where computational efficiency and the
capability to model sequential dependencies are essential
for automated or large-scale biomass analysis.

3 Methods

With the background established, this discusses the heart
of our analytical approach, i.e., the classification methods
that extract meaningful insights from the REIMS spectra.

3.1 Deep learning and evolutionary computation

The intricate nature and high dimensionality of REIMS
data demand advanced models capable of manag-
ing sequential relationships and complex spectral fea-
tures. We explore various architectures tailored to these
demands. Transformers (Vaswani et al. 2017; Devlin et al.
2018) utilize self-attention mechanisms to prioritize dif-
ferent mass-to-charge ratios within the spectra, akin to
their effectiveness in processing sequential data for lan-
guage tasks, which makes them adept at pinpointing key
regions in REIMS spectra for classification purposes.
LSTM networks (Hochreiter and Schmidhuber 1997)
are proficient at capturing extended dependencies across
mass-to-charge values, which is vital for identifying intri-
cate spectral patterns that may extend over broad data
ranges. Their capacity to retain and leverage information
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across long sequences is essential for detecting faint con-
tamination signals. VAEs (Kingma and Welling 2013)
generate compact representations of REIMS spectra,
proving useful for spotting anomalies and cross-species
contamination by modeling and reconstructing intricate
spectral distributions. We also investigate KAN (Liu et al.
2024), which can approximate complex functions in spec-
tral data that could reveal species distinctions or contam-
ination levels. CNN (LeCun et al. 1998) can explore local
dependencies within the spectra, treating them as 1D
signals with significant neighboring connections. Finally,
the Mamba architecture (Gu and Dao 2023) provides an
efficient state-space method for processing sequential
REIMS data, striking a balance between computational
efficiency and modeling power, which is critical for real-
time analysis.

Genetic programming (Koza 1994) is an evolution-
ary computation method that solves a given problem by
iteratively evolving a population of solutions, often rep-
resented by trees. Genetic programming has been used
for feature construction (Tran et al. 2016, 2019), which
can potentially enhance mass spectrometry data classifi-
cation by automatically generating and evolving complex
features from raw spectral data; thus, the constructed
high-level features can better capture intricate patterns
and relationships that simpler methods or original fea-
tures might miss. This approach can improve model
performance by tailoring features to the specific char-
acteristics of mass spectrometry datasets, such as peak
intensities and mass-to-charge ratios, leading to more
accurate identification of compounds or contaminants.

3.2 Transformer

3.2.1 Architecture

The transformer model, originally proposed in the semi-
nal paper by Vaswani et al. (2017), revolutionized natural
language processing and other tasks involving sequential
data by relying entirely on self-attention mechanisms
instead of recurrent or convolutional layers. Our trans-
former model consists of an encoder-only structure, in
which encoders are stacked as layers. Each encoder layer
comprises multi-head self-attention and position-wise
feed-forward layers. We implement a transformer with-
out positional embeddings (Wang et al. 2024).

In the architecture used in this work (Fig. 1), the
encoder blocks are equipped with residual connections
(He et al. 2016), allowing gradients to flow efficiently dur-
ing backpropagation. These residual connections act as
‘gradient superhighways, enabling deeper models without
the risk of vanishing or exploding gradients, thus allow-
ing better training stability.

A notable aspect of the transformer architecture used
in this work is the choice of pre-norm layer normalization
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Fig. 1 Transformer architecture

(Ba et al. 2016; Xiong et al. 2020), where layer normaliza-
tion is applied before the multi-head self-attention and
position-wise feed-forward layers. This approach con-
trasts with post-norm layer normalization (used after the
attention block), as it stabilizes training and improves the
convergence of deep transformers by ensuring more con-
sistent gradients across layers. By normalizing before the
main components of each layer, the pre-norm structure
helps maintain better gradient flow across the network,
contributing to more effective training of the encoder
layers.

3.2.2 Progressive masking

Figure 2 illustrates the concept of progressive masking
in pretraining transformer models. At the bottom right,
we see the original mass spectra. On the top left, we see
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Fig. 2 Masked language modeling, where m/z stands
for the mass-to-charge ratio

the first mask, which applies a mask to all spectra except
the first one. From that, we see masks that slowly shrink
down until we reach the original spectra. These patterns
illustrate how the masking process evolved, starting with
masking just one spectrum and progressively unmasking
more spectra in the sample. Mask 1 shows only the first
spectra, with the rest masked. Mask 2 reveals two spec-
tra, masking the remainder. Mask 3 unmasks one more
spectrum, showing three spectra. The final mask shows
all of the spectra except the final one. This progressive
masking technique creates multiple training examples
from a single spectrum, effectively increasing the amount
and diversity of training data for the transformer model.
In this work, we apply left-to-right progressive masking
to REIMS data. Instead of sentences in natural language
processing, we are masking mass spectra, and pretraining
has the model predict the masked spectra, which amor-
tized the limited number of training samples by creating
2080 masked spectra per instance to train from, resulting
in a training set of 2080 features x 72 samples = 149760
instances.
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3.2.3 Pretrained transformers

Pretraining is an extension of transformers that enables
them to be pretrained on a general task, and transfer the
pretrained weights to a transformer model to be fine-
tuned on a downstream task. This study adopts unsuper-
vised pretraining inspired by BERT (Devlin et al. 2018)
to improve the performance of transformer models on
mass spectrometry tasks. Unsupervised pretraining has
significant benefits, particularly for models working with
limited labeled data. By training on large-scale, unla-
beled datasets, the model learns general patterns that
capture the underlying structure of the data, resulting
in useful embeddings that can be fine-tuned for specific
downstream tasks with small-scale, labeled datasets. This
approach mitigates the need for extensive labeled data
while still providing high-quality results.

This approach is an adaptation of the masked language
modeling (MLM) task used in BERT to handle mass spec-
trometry data. In MLM, tokens in a sentence are progres-
sively masked, and the model is trained to predict these
masked tokens. Analogously, in masked spectra modeling
(MSM), mass-to-charge ratios in spectra are progres-
sively masked, and the model learns to predict the miss-
ing values, which is framed as a regression task, where
the loss function is the mean squared error. By learning to
predict missing mass-to-charge ratios, the model devel-
ops a robust understanding of the relationships between
features in the spectra, making it well-suited for down-
stream tasks. We use left-to-right progressive masking to
amortize the limited number of training instances.

By pretraining on this task, the transformer network
learns valuable domain-specific representations. When
fine-tuned on small-scale, labeled datasets, the model
can leverage these pretrained weights, resulting in
improved accuracy, faster convergence, and better gen-
eralization. This approach is particularly advantageous
in some fields, such as mass spectrometry, where labeled
data are limited, but large amounts of unlabeled data are
readily available.

4 Experimental setup

Having outlined our various ML approaches for analyz-
ing REIMS data, we now describe the experimental setup
used to evaluate these methods, including the benchmark
technique, datasets, and parameter settings used in our
evaluation.

4.1 Comparison methods
This study evaluates a diverse range of ML techniques to
classify the REIMS spectra:

(1) Benchmark method: Orthogonal partial least
squares disrciminant analysis (OPLS-DA) (Bylesjo

Page 6 of 15

et al. 2006). OPLS-DA is a supervised multivariate
analysis technique that separates predictive from
non-predictive variation in complex datasets to
improve model interpretability and identify vari-
ables that drive class separation.

(2) Traditional machine learning methods: Random
forest (RF) (Ho 1995), K-nearest neighbors (KNN)
(Fix and Hodges 1989), decision trees (DT) (Brei-
man 2017), naive Bayes (NB) (Hand and Yu 2001),
logistic regression (LR) (Kleinbaum et al. 2002),
support vector machines (SVM) (Cortes and Vap-
nik 1995), and linear discriminant analysis (LDA)
(Balakrishnama and Ganapathiraju 1998).

(3) Ensemble method (Hansen and Salamon 1990):
A combination of the aforementioned traditional
methods. A hard-voting ensemble classifier com-
bines multiple base classifiers by having each classi-
fier make a prediction and taking the most common
predicted class label as the final output through
majority voting.

(4) Deep neural networks: Transformer (Vaswani
et al. 2017; Devlin et al. 2018), LSTM (Hochreiter
and Schmidhuber 1997), VAE (Kingma and Well-
ing 2013), CNN (LeCun 1989; LeCun et al. 1989a,b
1998), KAN (Liu et al. 2024), and Mamba (Gu and
Dao 2023).

(5) Genetic programming: Multiple class independent
feature construction (MCIFC) (Tran et al. 2016,
2019) algorithm represents candidate solutions
as multiple trees, with one subtree per class. This
structure serves feature construction and classifica-
tion purposes, employing a winner-takes-all strat-
egy for class prediction.

4.2 Benchmark technique

To evaluate the performance of the proposed methods,
OPLS-DA (Bylesjo et al. 2006) is used as a benchmark to
compare new approaches with the existing methods for
REIMS analysis. OPLS-DA is the standard technique for
biomass analysis using REIMS, as supported by promi-
nent use in the literature (Balog et al. 2010; Jha 2015;
Black et al. 2017, 2019). Therefore, we use OPLS-DA as
a benchmark for comparative performance, showing the
contrast between traditional and new approaches for bio-
mass analysis with REIMS. OPLS-DA is considered an
ML technique, specifically a supervised dimensionality
reduction and classification method. OPLS-DA falls into
the category of linear supervised ML algorithms, similar
to partial least squares discriminant analysis and linear
discriminant analysis. However, the primary strength
of OPLS-DA lies in its capability to separate systematic
variation into predictive and orthogonal (non-predic-
tive) components, which makes it particularly useful for
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classification and biomarker identification in some fields,
such as metabolomics and chemometrics.

4.3 Experimental settings

Each method is evaluated, and the average is given over
30 independent runs. Stratified k-fold cross-validation,
with k =5 for fish species and k = 3 for body parts, is
particularly beneficial for evaluating model performance
on datasets with limited training samples and imbalanced
classes. This method ensures that each fold maintains a
class distribution similar to the entire dataset, which
helps the model learn effectively from the majority and
minority classes. By doing so, this method reduces the
variance of performance estimates, leading to more sta-
ble and reliable metrics. In addition, this method maxi-
mizes the use of available data, allowing each sample to
contribute to training and validation, which is crucial
for small datasets. With threefold and fivefold cross-
validations, the model is tested across various scenarios,
improving its generalization to unseen data and provid-
ing a comprehensive evaluation of its performance.

4.4 Datasets
This study utilizes datasets provided by New Zealand
Plant and Food Research as part of Cyber-Marine (Plant
and Food Research 2020). REIMS can be used to opti-
mize the value obtained from seafood resources. The
dataset consists of mass spectrometry samples collected
using REIMS, where an electrosurgical knife is used to
create an aerosol from the samples. This aerosol is then
directed into a mass spectrometer, where ionization
occurs, enabling mass-to-charge ratio analysis. Each
sample undergoes multiple incisions lasting 3-5 s, pro-
viding detailed chemometric data in the mass range of
m/z 77.04-999.32. Figure 3 shows the two wild-caught
fish species, i.e., hoki and mackerel, that are the subject
of this study. These are two important fish species in New
Zealand’s seafood industry, especially given that New
Zealand’s largest fishery is hoki (Ministry for Primary
Industries 2024).

For illustrative purposes, the different fish body parts,
which are shared across both species of fish, are shown
in Fig. 4.
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Fig. 4 Fish body parts

The dataset used consists of REIMS spectra collected
from two fish species and seven body parts. In particular,
we will have two different datasets corresponding to two
different tasks:

(1) Species classification: The task is to distinguish
between two species of fish (i.e., hoki and mackerel)
based on 2080 features derived from REIMS analy-
sis. This classification is crucial for food authen-
tication and quality control in the seafood indus-
try, helping prevent species substitution fraud and
ensure accurate product labeling. We focus on pure
(i.e., non-contaminated/unmixed) samples to estab-
lish a reliable baseline for species identification.
The dataset contains 106 samples, with a relatively
balanced distribution of 44.44% hoki and 55.56%

(a) Mackerel
Fig. 3 Mackerel (a) and hoki (b) fish species

(b) Hoki
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mackerel. These proportions reflect the natural
availability of samples while maintaining sufficient
representation for both species to train a robust
classifier.

(2) Body parts classification: This multi-class classifica-
tion task aims to identify seven distinct fish parts
(i.e., fillets, head, livers, skins, gonads, guts, and
frames) using REIMS data. The classification sup-
ports process automation by enabling automated
sorting and processing in seafood production lines
while helping maximize the value of each fish part,
such as using fillets for premium products and
frames for fish meal. Furthermore, precise classi-
fication ensures proper tracking and documenta-
tion of different fish components throughout the
supply chain. The dataset contains 33 samples with
a distribution of 16.66% each for fillets, heads, liv-
ers, skins, and guts and 8.33% each for gonads and
frames. The relatively small sample size per class is
attributed to the limited number of annotated sam-
ples for each class of body part.

The REIMS spectra were normalized to be within
x € [0,1], fitted to the training set of each fold. Let
X = {x1,%2,- -+ ,x,} be a dataset containing # elements.
The normalized value x; for each element x; is obtained
as follows:

X = Xi — Xmin 1
! Xmax — xmin, ( )
where xnip is the minimum value in the dataset X, xay is
the maximum value in the dataset X.

4.5 Parameter settings

Experiments use the default settings from sklearn
(Pedregosa et al. 2011), except for SVM with a linear
kernel, and LR set to 2000 for the maximum number
of iterations. The ensemble voting classifier combines
all of the traditional ML methods into one model. The
ensemble uses hard voting, i.e., the predicted class
labels for majority rule voting.

The deep learning models all use the following
parameters: The AdamW optimizer (Loshchilov and
Hutter 2017) decouples weight decay from the learn-
ing rate, an improvement over the popular Adam opti-
mizer (Kingma and Ba 2014). Dropout (Srivastava
et al. 2014) turns off neurons at random during train-
ing to efficiently approximate a bagged ensemble of
subneural networks. Label smoothing (Szegedy et al.
2016) softens class labels by combining the one-hot
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encodings with a uniform distribution, adding noise to
the class labels. The deep learning networks use Gauss-
ian error linear units (Hendrycks and Gimpel 2016) as
the activation functions. Early stopping (Morgan and
Bourlard 1989) is one of the most common forms of
regularization that saves the model parameters when
the validation loss is improved and tunes the hyperpa-
rameter of epochs (Goodfellow et al. 2016). To ensure
a fair comparison, each model has the same hyperpa-
rameters, i.e., a hidden dimension of 128, trained for
100 epochs, a learning rate of 1e-5, a batch size of 64, 4
layers (where applicable), dropout of p = 0.2, and label
smoothing of 0.1.

Table 1 presents the configuration of hyperparam-
eters for the transformer—these settings were derived
through trial and error via experimentation.

We follow the original paper for the parameter set-
tings for MCIFC (Tran et al. 2019). We use a construc-
tion ratio of 1, allowing for one tree per class.

5 Results and discussions

Having outlined our classification strategies, this sec-
tion now presents and interprets the outcomes of
applying these various ML techniques to the REIMS
datasets. Tables 2 and 3 list the results of the classifiers
on the training and test sets, with the best performing
model on the test set rendered in bold, and the sec-
ond best are rendered in italics. Notably, the method
‘pretrained’ indicates the transformer with progres-
sive left-to-right masked pretraining. The transformer
was pretrained on the training data of each fold during
stratified k-fold cross-validation.

Table 1 Transformer parameter settings

Parameter Setting
Learning rate 1e-5
Epochs 100
Dropout 0.2
Label smoothing 0.1
Early stopping patience 5
Optimiser AdamW
Loss: MSM MSE
Loss: speciation and part CCE
Input dimensions 2080
Hidden dimensions 128
Output dimensions: MSM 2080
Output dimensions: speciation 2
Output dimensions: part 7
Number of layers 4
Number of heads 4
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Table 2 Classification results of fish species identification

Method Train (%) Test (%)
OPLS-DA 9891+ 0.74 96.39 +4.44
KNN 9576 +0 7937+0
DT 100.00 £ 0 99.17+0

LR 100.00 £ 0 8521+0
LDA 9854 +0 92.29+0
NB 89.17+0 66.67 +0
RF 100.00 £ 0 90.05+0
SVM 100.00 £ 0 84.58+0
Ensemble 100.00 £ 0 87.84+ 040
Transformer 100.00+0 99.17+1.67
Pretrained 100.00 £ 0 99.62 +1.15
LSTM 100.00 £ 0 98.84+1.76
VAE 100.00+0 98.64 + 1.94
KAN 100.00 £ 0 9741 +£245
CNN 100.00 £ 0 96.87 +3.24
Mamba 100.00 + 0 98.27 +2.14
MCIFC 100.00 + 0 9789 +2.59

Table 3 Classification results of fish body part identification

Method Train (%) Test (%)
OPLS-DA 80.11£2.86 5117 £22.16
KNN 43.06+0 39.17+0

DT 100.00 +0 3550+4.35
LR 100.00 + 0 5958+ 0
LDA 7431+0 5292+0

NB 100.00 £ 0 48330

RF 100.00+0 61.67+0
SVM 100.00 £ 0 5233257
Ensemble 100.00 £ 0 5233+257
Transformer 100.00+0 84.06 + 6.42
Pretrained 10000+ 0 83.94+7.12
LSTM 100.00 + 0 82.11+£9.15
VAE 8543 £6.28 74.81 £13.84
KAN 100.00 £ 0 73.06 £9.58
CNN 100.00 + 0 7041 +13.75
Mamba 100.00 £ 0 80.67 +873
MCIFC 9795+ 1.61 5545 +19.19

5.1 Fish species classification

For the fish species classification task, the best perform-
ing model was the pretrained transformer (99.62%). This
model excels in capturing the intricate patterns in the
REIMS data, which provide distinct signatures for differ-
ent fish species. The high performance of the DT model
(99.17%) shows that even traditional ML methods are
highly effective in this domain. Tree-based models, such
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as DT and RF, work well because they can split the data
based on highly discriminative features, capturing non-
linear relationships effectively. For a DT, although indi-
vidual splits are linear (axis-parallel), their combination
creates non-linear decision boundaries.

The consistently high test accuracy across all models
indicates that the REIMS dataset for fish species contains
strong, distinguishable signals that can be effectively
exploited by various ML techniques, making the classi-
fication task easier for deep learning models and tradi-
tional methods. The models excel at this task because the
REIMS data provide clear, consistent, and high-dimen-
sional representations of species differences, which can
be leveraged by the deep architectures for feature extrac-
tion and the traditional methods for decision-making.

All of the deep learning models consistently outper-
form the traditional OPLS-DA method—with the pre-
trained transformer achieving 96.39% test accuracy—in
the literature for REIMS analysis. The research field of
REIMS analysis should consider deep learning meth-
ods for other applications, as they exhibit superior
performance.

5.2 Fish body part

The transformer without pretraining performed the
best in the fish body parts classification task, achieving
a test accuracy of 84.06%. These models are well-suited
for this task because they can handle complex and mul-
tidimensional input data, such as REIMS, capturing the
subtle differences between body parts through advanced
feature extraction and context awareness. LSTMs, with
their capability to capture sequential dependencies, also
perform well (82.11%), indicating some temporal or posi-
tional dependencies in the ionization patterns that relate
to specific body parts.

However, traditional ML methods show lower perfor-
mance in the fish body part task, compared to the fish
species task. This finding indicates that the fish body
parts classification task is inherently more complex
because of less distinct signal differences between body
parts, making it harder for simpler models to differenti-
ate between classes. This increased difficulty arises from
fewer training instances in the fish body parts dataset or
overlapping chemical compositions between different
parts of the same species. Previous work (Wood et al.
2022) on fish species and body part classification with gas
chromatography data illustrated the increased difficulty
of body part classification.

Again, all of the deep learning methods—with the trans-
former achieving the best test accuracy of 84.06%-out-
perform the OPLS-DA method (51.17%). For the second
task, deep learning methods have been proven to be
superior to the traditional approach in the literature.
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5.3 Summary

Across all tasks, the deep learning methods exhibited
superior performance to the OPLS-DA method that
dominates the literature (Balog et al. 2010; Jha 2015;
Black et al. 2017, 2019) on REIMS analysis. Future work
in the field for other applications of REIMS analysis
should consider deep learning methods as a viable alter-
native. The varying performance of different models
across tasks highlights the importance of selecting the
appropriate algorithms for specific analytical challenges
in marine biomass analysis. Although the transformer
model consistently excelled, simpler models, such as
DT, exhibited competitive performance in certain tasks,
with potential advantages in terms of interpretability and
computational efficiency. The challenges faced in body
part classification point to areas where further research
is needed, which might include exploring more advanced
feature extraction techniques, increasing the size and
diversity of the training dataset, or developing specialized
model architectures tailored to these specific tasks. Over-
all, our results indicate the potential of combining REIMS
with ML for automated and accurate marine biomass
analysis while also highlighting areas for future improve-
ment and research.

6 Further analysis on feature importance

Although the performance of our simple and pretrained
transformers is promising, understanding how they
arrive at their predictions is crucial for building trust and
gaining insights. The important features driving the deci-
sions made by black box models need to be identified so
that these models can be understood, trusted, and veri-
fied by domain experts in chemistry and fish processing.
To address this challenge, we employ LIME, a technique
used to explain predictions made by complex black box
ML models (Ribeiro et al. 2016). We analyze the top 5
most important features of the best performing models
that have been identified by LIME. LIME approximates
a complex model with a simpler and interpretable model
(e.g., linear regression) for a specific instance in a local
area to be understood. LIME creates and evaluates many
altered versions through perturbations of an instance in
the input data to see how those perturbations change the
prediction. Through perturbations and their observed
changes to the prediction, this information is used to
generate a local explanation that highlights the features
that influenced the prediction. LIME explanations, or
feature importance charts, are used to explain the pre-
dictions of ML models by identifying the features (in this
case, specific mass-to-charge ratios) that are most influ-
ential in a particular prediction. In these LIME charts:
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(1) Green bars represent the features (i.e., mass-to-
charge ratios) that contribute positively to the pre-
dicted class. In other words, the presence or higher
intensity of these features increases the likelihood
of the sample being classified as the predicted class.

(2) Red bars represent the features that contribute
negatively to the predicted class. In other words,
the presence or higher intensity of these features
decreases the likelihood of the sample being classi-
fied as the predicted class.

(3) The x-axis represents the length of each bar that
indicates the magnitude of the importance of the
feature. Longer bars (whether green or red) signify
that the corresponding feature strongly influences
the prediction of the model. Thus, the x-axis repre-
sents the importance of the feature.

(4) The y-axis represents the mass-to-charge (m/z)
ratios and their intensity thresholds from the mass
spectrometry data. Thus, the y-axis represents the
important features.

The 1D gradient-weighted class activation map-
ping (Grad-CAM) (Selvaraju et al. 2017) implementa-
tion visualizes the features in the mass spectrometry
data that most influence the classification decisions of
a transformer model. For correctly classified samples,
Grad-CAM generates an ‘average correct Grad-CAM’
by calculating the mean importance across all correctly
predicted samples. This visualization shows the mass
spectrometry peaks (represented by feature indices)
that consistently contribute to accurate classifications.
The implementation works by capturing gradients flow-
ing through the final attention layer of the model during
backpropagation, weighting the activation of each feature
by its gradient, and normalizing the results. The resulting
graph highlights regions in the mass spectra that are most
discriminative for classification, providing interpretabil-
ity for what would otherwise be a black box model. This
insight is particularly valuable for mass spectrometry
applications, where understanding the mass-to-charge
ratios that drive classification can provide biochemical
insights into the underlying samples.

6.1 Fish species classification

The pretrained transformer achieves the best classifi-
cation accuracy (99.62%) for fish species classification.
Figure 5 shows the LIME chart for the pretrained trans-
former for the mackerel fish species. The most important
feature, denoted by the strongest green bar, is detected
when the mass-to-charge ratio (m/z) of 794.0990 is
within the normalized intensity range of 0.28 < y < 0.47,
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0.28 <794.0990 < 0.47
0.18 <367.2013<0.26

0.36<614.1633<0.43

0.18 <647.1101 <0.31

031 <338.1242 < 0.43 e

-0.10  -0.05 0 0.05 0.10
Fig. 5 LIME explanation for the pretrained transformer model using
in mackerel species classification

indicating that large amounts of this molecule are present
in the mackerel fish species.

Figure 6 shows the LIME chart for the pretrained
transformer for the hoki fish species. The most impor-
tant feature, denoted by the strongest red bar, is when
the mass-to-charge ratio (m/z) of 229.0710 is within the
normalized intensity range of 0.26 < y < 0.36, indicat-
ing that large amounts of this molecule are present in a
sample does not belong to the hoki fish species.

Figure 7 illustrates the DT with near-perfect accu-
racy, showing how a simple model with two splits, can
classify fish species, giving both a highly accurate and
interpretable model. The figure shows the two mass-to-
charge ratios and their intensity thresholds on which
they based their decision boundaries.

Figure 8 shows the average correct Grad-CAM for the
body part classification task, highlighting the important
features in the mass spectrograph that contribute to
correct classifications, averaged across all of the classes.
From the figure, we identify important features with

0.26 <229.0710<0.36

616.1721 <0.19
905.1194<0.11
874.1162<0.20

0.19<183.1732<0.26

~0.100-0.075-0.050 -0.025 0  0.025 0.050 0.075 0.100
Fig. 6 LIME explanation for the pretrained transformer model used
in hoki species classification
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high discriminative capability in the feature index range
of 200-800 for the mass-to-charge ratios, with coeffi-
cients greater than 0.5.

6.2 Fish body part

The transformer performs the best (83.94%) on the fish
parts dataset. Figure 9 shows the LIME chart for the
transformer for the fish part classification of fish heads.
The most important feature, denoted by the strong-
est green bar, is detected when the mass-to-charge ratio
(m/z) of 256.1089 is within the normalized intensity
range of 0.26 < y < 0.35, indicating that large amounts of
this molecule are likely present in fish heads.

Figure 10 shows the LIME chart for the transformer
for the fish body part classification of fish fillets. The
most important feature, denoted by the strongest red
bar, is detected when the mass-to-charge ratio (m/z) of
722.0810 is greater than the normalized intensity of 0.41,
indicating that large amounts of this molecule are not
expected in fish fillets.
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0.26 <256.1089 <0.35
0.18 <115.1269 <0.29
0.12<241.2320<0.20
0.10<801.1062 <0.22

939.3868 > 0.31

0.02 0.04 0.06 0.08 0.10 0.12
Fig. 9 LIME explanation forthe transformer model used in fish head
classification

722.0810 > 0.41 _
0.17 < 526.0828 < 0.28 _

107.0327 < 0.05 _
0.22 < 131.1195 <0.28 _

0.13 <341.1894 <0.19

—0.08 -0.06 -0.04-0.02 0 0.02 0.04
Fig. 10 LIME explanation for the transformer model used in fish
fillets classification

Figure 11 shows the LIME chart for the transformer
for the fish body part classification of fish livers. The
most important feature, denoted by the strongest red
bar, is detected when the mass-to-charge ratio (m/z) of
849.2039 is within the normalized intensity range of
0.27 < y < 0.38, indicating that large amounts of this
molecule are not likely to be found in fish liver.

Figure 12 shows the LIME chart for the transformer
for the fish body part classification of fish skins. The
most important feature, denoted by the strongest red
bar, is detected when the mass-to-charge ratio (m/z) of
191.0813 is greater than the normalized intensity of 0.32,
indicating that large amounts of this molecule are not
usually found in fish skins.

Figure 13 shows the LIME chart for the transformer
for the fish body part classification of fish guts. The most
important feature, denoted by the strongest red bar, is
detected when the mass-to-charge ratio (m/z) 675.1786
is less than or equal to the normalized intensity of 0.11,
indicating that small amounts of this molecule are not
usually found in fish guts.
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0.27 < 849.2039 < 0.38
518.1448 <0.18
0.23 <813.2059<0.33

638.1687 > 0.34

795.1101 <0.14

-0.06 -0.04 -0.02 0 0.02 0.04
Fig. 11 LIME explanation for the transformer model used in fish livers
classification

191.0813 > 0.32 _
602.1603 > 0.36 _
535.0888 > 0.32 _
4052187<0

-0.04 —-0.02 0 0.02 0.04
Fig. 12 LIME explanation for the transformer model used in fish skins
classification

690.1851 <0.16

675.1786 <0.11

0.18 < 184.1679 < 0.22 _
107.1019 > 0.28 -

226.1366 < 0.20

—0.08 -0.06-0.04 —-0.02 0 0.02 0.04
Fig. 13 LIME explanation for the transformer model using in fish guts
classification

495.0715<0.08

Figure 14 shows the LIME chart for the transformer
for the fish body part classification of fish frames. The
most important feature, denoted by the strongest green
bar, is detected when the mass-to-charge ratio (m/z)
of 533.161 is within the normalized intensity range of
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0.25 <533.1606 < 0.42
0.17 <236.1208 < 0.20
0.26 <675.1786 < 0.37

0.26 <827.1927<0.35

152.1891 <0 ]

—0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06
Fig. 14 LIME explanation for the transformer model used in fish
frames classification

0.25 < y < 0.24, indicating that average to large amounts
of this chemical are not expected to be found in fish
frames.

Figure 15 shows the LIME chart for the transformer for
the fish body part classification of fish gonads. The most
important feature, denoted by the strongest red bar, is
detected when the mass-to-charge ratio (m/z) of 93.0882
is less than or equal to the normalized intensity threshold
of 0.09 < y < 0.18. Biochemically, this finding indicates
that the m/z of 93.0882 might correspond to a compound
not found in fish gonads.

Figure 16 shows the average correct Grad-CAM for the
body part classification task, highlighting the key features
in the mass spectrograph that contribute to accurate clas-
sifications, averaged across all of the classes. From the
figure, we identify one important feature in the feature
index range of 0—100, another in the feature index range
of 500—600, and four more in the feature index range of
1000-1750 for the mass-to-charge ratios, with coeffi-
cients greater than 0.8. This Grad-CAM identifies more
important features, with a higher average importance, for
fish body parts than for fish species.

0.09 <93.0882<0.18

0.10<375.1905<0.14

0.03 <655.1563 <0.18

404.2114<0

0.17 < 710.1266 < 0.29 e
-0.04 -0.02 0 0.02 0.04
Fig. 15 LIME explanation for the transformer model used in fish
gonads classification
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7 Conclusions and future work

The results of these classification tasks indicate that
deep learning models, particularly transformer, are
well-suited for handling the complex, high-dimensional
data generated by REIMS data. These models consist-
ently outperform traditional ML methods, especially for
tasks involving subtle or overlapping signal differences,
such as body part detection. The pretrained transformer
outperforms the regular transformer on fish species
classification, indicating that pretraining captures mean-
ingful embeddings that improve the performance of
downstream classification tasks. Although traditional
models, such as DT, show excellent performance in sim-
pler tasks, such as fish species classification, their perfor-
mance decreased significantly in more challenging tasks,
highlighting the need for advanced feature extraction and
representation learning that deep learning models pro-
vide. The overall strong performance across the board
indicates that REIMS data provide rich, discriminative
information, particularly for fish species classification.
However, body part identification requires more sophis-
ticated modeling approaches, where deep learning excels
because of its capability to capture complex patterns and
subtle signal deviations.

The application of explainable Al techniques, i.e., LIME
and Grad-CAM, provided valuable insights into the deci-
sion-making processes of our models. These explanations
revealed specific mass-to-charge ratios that strongly
influence classifications, enhancing our understanding
of the biochemical markers associated with different fish
species and body parts. For instance, the LIME analysis of
fish speciation highlighted distinct spectral regions that
differentiate mackerel from hoki. The Grad-CAM analy-
sis generated class activation maps that quantitatively
highlighted the ion peaks in the m/z range at feature
index 200-800 for fish species, which exhibited sig-
nificance coefficients > 0.5 across all correctly classified
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samples, confirming these spectral features as statistically
significant biomarkers rather than artifacts of the classifi-
cation algorithm.

This interpretability not only increases confidence
in the predictions of the model but also opens up pos-
sibilities for new scientific insights into the biochemi-
cal composition of marine biomass, demonstrating that
our approach can provide accurate classifications and
meaningful, chemically relevant explanations for those
classifications.

Overall, this research opens up new possibilities for
automated, accurate, and interpretable analysis in marine
biomass composition studies, with significant implica-
tions for quality control, product optimization, and food
safety in marine-based industries.

Although our study has yielded promising results, it
also opens up numerous avenues for further research
and development. These are potential directions for
expanding and refining our approach. These directions
for future work include (1) developing a system for real-
time REIMS data acquisition and analysis, allowing for
immediate classification results in industrial settings,
and (2) working with regulatory bodies to ensure that the
developed methods meet or exceed current standards for
marine biomass analysis and food safety monitoring.
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