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Abstract. Fish is approximately 40% edible fillet. The remaining 60%
can be processed into low-value fertilizer or high-value pharmaceutical-
grade omega-3 concentrates. High-value manufacturing options depend on
the composition of the biomass, which varies with fish species, fish tissue
and seasonally throughout the year. Fatty acid composition, measured by
Gas Chromatography, is an important measure of marine biomass qual-
ity. This technique is accurate and precise, but processing and interpret-
ing the results is time-consuming and requires domain-specific expertise.
The paper investigates different classification and feature selection algo-
rithms for their ability to automate the processing of Gas Chromatography
data. Experiments found that SVM could classify compositionally diverse
marine biomass based on raw chromatographic fatty acid data. The SVM
model is interpretable through visualization which can highlight impor-
tant features for classification. Experiments demonstrated that apply-
ing feature selection significantly reduced dimensionality and improved
classification performance on high-dimensional low sample-size datasets.
According to the reduction rate, feature selection could accelerate the clas-
sification system up to four times.

Keywords: AI applications · Classification · Feature selection ·
High-dimensional data · Particle swarm optimization ·
Multidisciplinary · Gas chromatography · Fatty acid

1 Introduction

Fish oil is rich in omega-3 polyunsaturated fatty acids, nutritionally important
fats that are found at increasingly low concentrations in Western diets [21].
This has contributed to a high consumer demand for omega-3 supplements, pro-
duced from a wide range of marine biomass [17]. The suitability of a given fish
species (or fish tissue) for the production of high-value omega-3 supplements
depends on fatty acid composition, which is determined by an analytical chem-
istry technique called Gas Chromatography [6,19]. However, fatty acid data
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must be carefully processed and interpreted by domain experts (i.e. chemists),
which is very expensive and time-consuming. Previous works using CNNs, [3,14],
showed high classification accuracy on Gas Chromatography data. However,
these black-box models do not produce interpretable models, making it diffi-
cult to verify/troubleshoot these models for fish processing in a factory setting.

The goal of this work is to automate the processing and interpretation of
Gas Chromatography data using machine learning algorithms, to substantially
increase fatty acid analysis throughput. However, it is not a trivial task to
format Gas Chromatography data for existing classification algorithms. Fur-
thermore, each Gas Chromatography data consists of almost 5000 values (fea-
tures/variables), far more numerous than the number of fish samples (153). This
large number of features relative to samples (the curse of dimensionality) results
in a sparsely populated data space, which can result in overfitting i.e. where
the built model works well on the training set but poorly on the test (unseen)
set. Redundant (providing the same information as other features) or irrelevant
features (providing misleading information for the classification task) are also
common in this type of dataset [15], which can reduce classification performance
and cause long training times. Therefore, the paper also assessed the utility of
feature selection to preprocess and remove these irrelevant/redundant features.

The goals of this work are to investigate the viability of classifying different
marine biomass, automate processing of raw Gas Chromatography data, improve
analytical throughput and reduce labour costs, and reduce the dimensionality of
Gas Chromatography data required to perform fish oil production and analysis.
The contributions of this work are broken into three main steps:

– Data preprocessing: This step converts Gas Chromatography data into tabu-
lar format data appropriate as input into a machine learning algorithm. The
paper finds an effective method to detect and fill the missing packets/features
which improves the classification performance over using the raw data.

– Analysing classification algorithms: The second step performs experiments
with five types of classification algorithms, including instance-based classi-
fiers, probabilistic classifiers, tree-based classifiers, ensemble classifiers, and
kernel-based classifiers, to classify fish samples [4,7–9,13]. Experiments find
that kernel-based classifiers, particularly linear SVM, achieve high classifi-
cation accuracy on the fish data. The paper visualises the learnt model and
identifies that not all the data, represented as features, are useful, which leads
to the final step.

– Feature selection: The last step applied feature selection methods to reduce
the amount of collected data i.e., the number of features. The experimental
results illustrate that the number of features could be reduced by almost 75%
while improving the classification performance.
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Fig. 1. Gas Chromatogram of Fatty Acid Methyl Esters from Snapper Skin.

2 Gas Chromatography

Gas Chromatography is an analytical chemistry method commonly used to inves-
tigate the fatty acid compositions of biological samples e.g. marine oils [6,19]. It
works by increasing the temperature of a very narrow ‘capillary’ column, which
separates each fatty acid from the complex mixture based on their individual
chemical characteristics e.g. molecular size, volatility, and polarity. An example
of Gas Chromatography for fatty acid analysis is shown in Fig. 1. The x-axis
represents the time required to separate the individual fatty acids (or a packet),
and the y-axis represents peak intensity (or the packet intensity), which is pro-
portional to the concentration of each fatty acid. Chemists integrate the area
under each peak to measure how much of each fatty acid is present, and use
this information to understand the best use of the oil. This process can be slow,
labour-intensive and expensive.

The goal of this work is to apply machine learning, particularly classification
algorithms to automatically classify the fish data, a real-world problem in New
Zealand. However, the current Gas Chromatography data is not readily applied
to machine learning algorithms due to missing packets which are not caught by
the system detector. The missing packets cause the misalignment between two
samples, i.e., intensities at the same time of the two chromatographs may have
different meanings. Therefore, it is necessary to detect such missing packets to
align the data before applying machine learning algorithms.
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Table 1. Inconsistent timestamps

Timestamp

Sample 1 Sample 2 Sample 3

Packet 1 51 50 50

Packet 2 52 51 51

Packet 3 53.05 53.1 53

3 Data Preprocessing and Formation of Classification
Problems

The Y-data output from the Gas Chromatography analysis consists of many
packets with variable intensities. In theory, they could be used as features to
classify the different fish samples, but there were a large number of inconsisten-
cies between packets in the different fish samples. An example, focusing on these
inconsistencies for three different fish samples, is shown in Table 1. Although all
three samples have three packets, their timestamps are different. For example,
the timestamp of the first packet of Sample 1 is 51, while the timestamp of the
first packet of Sample 2 is 50. In other words, the first packet of Sample 1 does
not correspond to the first packet of Sample 2, and thus it does not make sense
to directly apply a classification algorithm to the raw data. Initial experiments
tried KNN (K = 3), and the classification performance was only 67%, which is
quite low.

Further investigation revealed that the main reason was due to the missing
packets, caused by the absence of signal at the Gas Chromatography detector.
For example, for Sample 1, the packet at the timestamp 50 is missed, and thus
the first packet of Sample 1 is at 51. These missing packets are unavoidable for
this dataset, therefore a method is needed to handle missing data. Preprocessing
aligns the packets from all the samples. Firstly, all unique timestamps are col-
lected by analysing all the possible samples in the training set. For the example
given in Table 1, the set of unique timestamps is {50, 51, 52, 53, 53.05, 53.1}.
Thus, there should be six packets in total, while Table 1 shows only three pack-
ets for each sample. Based on the timestamp set, the packets at {50, 53, 53.1}
are missing for Sample 1. Once the missing packets are identified, these missing
intensities need to be filled.

This work tried three different standard methods for missing values: filling 0,
filling the average value, and filling the median value. The results show that filling
0 gives the most promising results with 83.57% on KNN (K = 3). The possible
reason is that the missing packets have low intensities, which the detector might
not be able to detect. Thus, the 0 value is quite close to the intensities of the
missing packets. Therefore, the filling 0 method was chosen. The authors are
aware that there are more complex methods for imputing missing values, [22,24],
but they are not the focus of the paper and will be left for future work [23].

The processing gives 4800 packets for each sample, which meant each sam-
ple had 4800 features. The number of fish samples was 153. There is a class
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imbalance for the fish species dataset, where Blue cod is the majority class e.g.,
68 samples are Blue Cod of the total 153 samples. There are two classification
tasks associated with the data:

– To predict the fish species for each fish sample. There are four fish species:
Snapper, Gurnard, Tarakihi, and Blue cod.

– To predict from which body part the fish sample is extracted. There are six
body parts: Frame, Gonad, Head, Liver, Skin, and Guts.

4 Classification Performance

The following section illustrates the classification performance on the fish species
and body parts.

4.1 Experiment Settings

Firstly, since the number of samples is small, the experiment uses 10-fold cross-
validation to conduct the experiments. For 10-fold cross-validation, the method
divides the data into 10 folds such that the proportions of the classes in each
fold are representative of the proportions in the whole dataset. Each fold plays
the testing role, while the remaining 9 folds are combined to form a training set.
A classification algorithm is then trained on the training set, and the obtained
classifier is evaluated on the test set. Finally, 10 testing accuracies are obtained,
and their mean value and standard deviation are given as the final classification
performance. The experiment measures the balanced accuracy, so as not to bias
results towards the majority class (i.e. Blue cod for fish species).

These experiments compare five well-known classifications: K Nearest Neigh-
bours (KNN), Naive Bayes (NB), Random Forest (RF), Decision Trees (DT),
and Linear Support Vector Machines (SVM) [4,7–9,13]. The parameters are the
default settings in scikit-learn [18].

4.2 Results and Discussion

Table 2 shows the results for KNN, RF, DT, NB, and SVM. Results are given
for fish species (top), and fish part (bottom) datasets. The mean and standard
deviation of balanced accuracy is given using the fish species and part datasets.
For each dataset, the best accuracy is emphasized in bold.

As can be seen from the table, RF, DT and SVM achieve 100% training
accuracies. However, on the test set, DT and RF do not achieve good classifica-
tion performance. The main reason is that there is a small number of training
samples. The trees built by DT and RF can perfectly fit the training data by
creating large trees that remember all the possible training samples. Such trees
do not generalise well on the test set, which is the overfitting problem in machine
learning. KNN does not achieve good performance since it is a distance-based
classification algorithm which suffers the most from the large number of features.
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Table 2. Classification accuracies

Dataset Method AvgTrain ± Std AveTest ± Std

Fish Species KNN
RF
DT
NB
SVM

83.57 ± 1.80
100.0 ± 0.00
100.0 ± 0.00
79.54 ± 1.60
100.0 ± 0.00

74.88 ± 12.54
85.65 ± 10.76
76.98 ± 13.12
75.27 ± 4.35
98.33 ± 5.00

Body Parts KNN
RF
DT
NB
SVM

68.95 ± 3.49
100.00 ± 0.00
100.00 ± 0.00
65.54 ± 2.69
100.00 ± 0.00

43.61 ± 13.48
72.60 ± 16.15
60.14 ± 14.57
48.61 ± 12.19
79.86 ± 8.52

Similar to KNN, NB does not achieve good performance since it assumes condi-
tional independence between features that may not be true in the fish datasets.
The SVM classifier outperforms the other classifiers on the test set, with 98.33%
and 79.86% for fish species and body parts, respectively. The main reason is that
SVM can handle a large number of features, so SVM is suitable to classify the
fish data.

Another essential point is that the classification accuracy on the fish species
is always higher than the classification accuracy on the body parts. The results
suggest that classifying body parts is a more challenging problem. A possible
reason is that the tissue samples from different species may have very different
chemical components. Meanwhile, the tissue samples from different body parts
(but on the same fish species) may have similar chemical components. Future
work will investigate more sophisticated mechanisms to improve the classification
performance on classifying body parts.

4.3 Interpret SVM Models

Achieving a high classification performance is great. However, in real-world appli-
cations, it is essential to analyse why the models work well. This subsection ana-
lyzes the Linear SVM model built to classify the fish species. The main idea of
SVM is to build hyperplanes that separate different fish species. For SVM with
linear kernels, the hyperplane is represented by a weight vector in which each
weight is associated with a feature. The larger the weight, the more important
the corresponding feature. After an SVM classification algorithm is trained on
the training set, an SVM classifier containing a learned weight vector is obtained.
This section analyses the learned weight vector to examine the contribution of
each packet/feature.

Figures 2a and 2b show the coefficients of hyperplanes to separate Snapper
and Blue cod from other species, respectively. The horizontal axis is the fea-
ture index and the vertical axis is the coefficient value. The negative weights
are in red and the positive weights are in blue. Gas Chromatography data is
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(a) Snapper

(b) Blue cod

Fig. 2. SVM hyperplane coefficients

non-negative, so only negative weights push toward the negative class, therefore
positive weights are expected values, and the negative values are not. Note that
when considering the feature importance, the absolute values of the weights
should be considered, i.e., the longer the bar, the more important the corre-
sponding features. Both figures demonstrate that most features have relatively
small weights, which suggests not all the 4800 packets/features are needed to
classify the fish data.
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5 Feature Selection

5.1 Motivations

As can be seen in the SVM models, it is not necessary to use all the 4800
packets/features to perform fish classification. Therefore, the number of packets
can be reduced while maintaining (or even improving) the classification perfor-
mance. In an automated classification system, it would be great to significantly
reduce the number of packets. Since then the system will not need to wait for
a large number of packets to arrive at the end of the detector, hence signifi-
cantly improving the system efficiency and throughput. The remaining question
is which packets or features should be used. This question motivates us to con-
duct a further investigation using feature selection to select the most important
packets/features.

5.2 Feature Selection Methods

In a classification problem, the classification performance relies heavily on fea-
ture quality. However, in a large set of features as in the fish data, there are
usually redundant or irrelevant features that blur useful information provided
by the relevant features. Feature selection aims to select an informative sub-
set of relevant features, which is expected to significantly reduce the number of
features while maintaining (or even improving) the classification performance.
In a feature selection system, subset evaluation is an essential component that
evaluates the quality of a feature subset. Based on the subset evaluation, the
system can continuously improve the subset quality until a stopping criterion is
met. The final feature subset is the output as the final solution.

This section compares four common feature selection methods:

– χ2 (chi-square) [12] is a statistical measure that computes the independence
of two variables X and Y . The formula of χ2 is

χ2 =
N∑

k=1

(Xk − Yk)2

Yk
(1)

where k is the index of the sample and N is the number of samples. In feature
selection, χ2 can be used to measure the independence between a feature and
a class label. Since there is usually a high dependency between a relevant
feature and a class label, the low χ2 value indicates that the features are
more relevant. Thus, the features can be ranked in ascending order and the
top-ranked features can be selected.
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– Minimum Redundancy and Maximum Relevance (mRMR) [5] uses
mutual information to perform feature selection. Mutual information between
two variables X and Y , i.e., I(X;Y ) calculates the dependency between two or
more variables. mRMR aims to select a feature subset such that the redun-
dancy of the selected features is minimised and the relevance between the
selected features and the class label is maximised. Given a set of selected
features A, the score of a feature Xi, i.e., Si is calculated by the following
formula:

Si = I(Y ;Xi) − 1
|S|

∑

Xj∈A

I(Xi;Xj) (2)

mRMR has many iterations where at each step mRMR will add the best
feature based on Eq. (2). mRMR stops when a predefined number of features
are selected.

– ReliefF [20] is a feature selection algorithm based on distance measures. In
ReliefF, a good feature should be able to separate instances from different
classes well while the instances from the same class should not be far from
each other. The algorithm ranks all features based on the idea of nearest
neighbours. For a feature, if the distance between two nearest instances from
different classes (a miss) is large, the feature score is increased since the
feature can separate different classes well. On the other hand, if the distance
between the two nearest instances from the same class is large (a hit), the
feature score is decreased. In ReliefF, the higher the score, the more relevant
the feature. Therefore, all features are ranked in descending order, and the
top-ranked features are selected.

– Particle Swarm Optimisation (PSO) [10,16] for Wrapper Feature
Selection utilises the classification performance as the fitness function to
achieve feature selection. The main idea is to have a swarm of particles that
can explore the feature subset space in parallel. Each particle represents a
feature subset. The quality of each particle is the classification performance
of the corresponding feature subset. Since it is necessary to train a classifi-
cation algorithm during the evaluation process, the classification algorithm
is “wrapped” inside the PSO algorithm (that is why the algorithm is called
Wrapper PSO). In this work, a linear SVM is used as the wrapped classifica-
tion algorithm since it achieves good classification performance. Each particle
records the best feature subset that it discovered so far (called personal best
or pbest) and the best feature subset that is discovered by the whole swarm
so far (called global best or gbest). The particle then updates its position by
moving towards the two best positions. It is expected that the new subset
at the new position will have better quality (i.e., higher classification perfor-
mance) than the previous position. An advantage of PSO is that the particle
movement is stochastic. Thus, the swarm can globally explore the feature
subset search space, which is an essential point when dealing with a large and
complex search space like feature selection. Therefore, PSO has gained much
attention from the feature selection community recently [15].
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Although there are other advanced and complicated feature selection algo-
rithms [1,2,11,25], this work starts with the above four simple but well-known
techniques. If the results are promising, future work will investigate extensions
of these and/or other feature selection algorithms.

5.3 Experiment Settings

Following the same setting in the classification part, this experiment uses 10-
fold cross-validation to generate the training and test sets. For each method, the
balanced classification accuracy is measured with a linear SVM classification
algorithm [18]. For χ2, mRMR, and ReliefF, a hyperparameter for the number
of selected features must be given. Therefore, the experiments measure the per-
formance of the three algorithms on a wide range of the number of features:
{50, 100, 150, ..., 4800} with increment 50. For PSO, the swarm size is set to 30
and the maximum number of iterations to 100. An advantage of PSO is that it
does not need to specify a hyperparameter for the number of selected features.
Since PSO is a stochastic algorithm, it is run 30 independent times on each
classification task to make a reliable comparison.

5.4 Feature Selection Performance on Fish Species Classification

Figure 3 shows the results for χ2 (chi2), ReliefF, mRMR and PSO on the fish
species. The vertical axis is the classification accuracy and the horizontal axis
is the number of selected features. As can be seen from the figures, the three
algorithms χ2, mRMR, and ReliefF perform poorly when the number of selected
features is small. The main reason is that when the number of selected features
is small, many relevant features are not selected, and thus essential classification
information is missed. Among the three algorithms, χ2 usually achieves the low-
est classification performance since χ2 does not reduce the feature redundancy
and does not consider the interactions between features. ReliefF and mRMR
achieve comparative performance. mRMR achieves its highest training and test-
ing accuracies when the number of selected features is around 1500, which can
be seen in Table 3.

As can be seen from the figure, most feature subsets evolved by PSO have
from 1100 to 1500 features. The results indicate that PSO can automatically
determine a good number of selected features, which cannot be achieved by
the other three algorithms. As can be seen in Table 3, the highest classification
performance of PSO is 99.17% which is about 1% higher than using all features.
Meanwhile, PSO can remove 75% of the features, which means the classification
system can be four times faster given the number of required packets/features
is reduced by four times.
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(a) Species: Training set (b) Species: Test set

Fig. 3. Classification Accuracy of Fish Species on Different Numbers of Selected Fea-
tures.

Table 3. Best accuracy on Fish Species.

Method Number of features Training accuracy Testing accuracy

ReliefF
mRMR
χ2

PSO
Full

359
1500
3250
1192
4800

100.0
100.0
100.0
100.0
100.0

98.33
99.17
98.33
99.17
98.33

5.5 Feature Selection Performance on Body Parts Classification

Figure 4 shows the results for χ2, ReliefF, mRMR and PSO on the fish part
dataset. As can be seen in Fig. 4a, χ2, mRMR, and Relief-F witness a sharp
improvement when the number of selected features is in the range [0, 500],
which indicates that the 500 top-ranked features are essential to select. After
that, the three approaches have a gradual incline, which peaks at 100% where
all the features are selected. On the other hand, PSO selected feature subsets
with sizes ranging in [1200, 1300]. Given the same classification performance,
PSO usually selects a smaller number of features than the other three feature
selection algorithms. The main reason is that PSO considers the interaction in
the whole set of features, meanwhile, the other algorithms only consider the
pair-wise interactions between feature pairs.

Table 4 illustrates the best accuracy for classifying fish body parts. As can
be seen from the table, the best classification performance at 86.94% is achieved
with 1500 features selected by mRMR. Thus, feature selection can also improve
7% accuracy over using all features. Meanwhile, the number of features is reduced
by 2.5 times, which means the system can be 2.5 times faster. It should be noted
that the testing performance of PSO is not as good as mRMR despite its superior
training performance. The results indicate the potential overfitting of PSO on
classifying body parts, which can be investigated more in the future.
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(a) Part: Training set (b) Part: Test set

Fig. 4. Classification accuracy of Fish Body Parts on Different Numbers of Selected
Features.

Table 4. Best accuracy on fish body parts

Method Number of features Training accuracy Testing accuracy

ReliefF
mRMR
χ2

PSO
Full

1650
1500
1550
1223
4800

100.0
100.0
100.0
100.0
100.0

84.44
86.94
82.50
84.31
79.86

5.6 Summary

In general, feature selection can significantly reduce the number of required
packets/features and improve classification performance. For classifying the fish
species, 75% of packets can be removed. For classifying the body parts, 60% of
packets can be removed. The significant reduction means that the overall clas-
sification system can be up to 4 times faster. It should be noted that classifying
the body part is more challenging than classifying the fish species. That is why
classifying the body parts requires more features. Last but not least, PSO can
automatically determine a good number of selected features. In general, PSO
achieves good classification performance, except for some signs of overfitting
which can be investigated in future.

6 Conclusions and Future Work

This paper has proposed an interpretable and effective classification process
for fish oil analysis. Based on the results, it can be concluded that machine
learning is a promising direction to improve the effectiveness and efficiency of
the overall fish product system. In terms of accuracy, the proposed model can
achieve high classification performance on classifying both fish species and body
parts. However, fish species are easier to predict than body parts since there is
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more intra-class variation within fish species than there is a similarity between
the same part from different fish. Among the considered classification algorithms,
linear SVM achieves the best classification performance since it is suited to high-
dimensional problems. Analysis of the SVM model demonstrates that not all
packets are needed, and thus feature selection has been conducted to significantly
reduce the number of packets and improve the classification performance.

It is worth noting that the classification and feature selection methods pre-
sented in this paper could be extended to further improve performance. This is
particularly useful for the lower-accuracy fish part dataset. A potential direc-
tion is to improve the classification performance by constructing more informa-
tive high-level features, also known as feature construction. In addition, a more
sophisticated imputation method can be developed to fill the missing packets in
the fish data.
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